• Title/Summary/Keyword: Failure Tolerance

Search Result 242, Processing Time 0.028 seconds

Fault Tolerance Design for Servo Manipulator System Operating in a Hot Cell

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2467-2470
    • /
    • 2003
  • In this paper, fault tolerant mechanisms are presented for a servo manipulator system designed to operate in a hot cell. A hot cell is a sealed and shielded room to handle radioactive materials, and it is dangerous for people to work in the hot cell. So, remote operations are necessary to handle radioactive materials in the hot cell. KAERI has developed a servo manipulator system to perform such remote operations. However, since electric components such as servo motors are weak to radiations, fault tolerant mechanisms have to be considered. For fault tolerance of the servo manipulator system, hardware and software redundancy have been considered. In case of hardware, radioactive resistant electric components such as cables and connectors have been adopted and motors driving a transport have been duplicated. In case of software, a reconfiguration algorithm accommodating one motor's failure has been developed. The algorithm uses redundant axis to recover the end effector's motion in spite of one motor's failure.

  • PDF

Determination of the profit-maximizing configuration for the modular cell manufacturing system using stochastic process (실시간 고장포용 생산시스템의 적정 성능 유지를 위한 최적 설계 기법에 관한 연구)

  • Park, Seung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.614-621
    • /
    • 1999
  • In this paper, the analytical appproaches are presented for jointly determining the profit-miximizing configuration of the fault-tolerance real time modular cell manufacturing system. The transient(time-dependent) analysis of Markovian models is firstly applied to modular cell manufacturing system from a performability viewpoint whose modeling advantage lies in its ability to express the performance that truly matters - the user's perception of it - as well as various performance measures compositely in the context of application. The modular cells are modeled with hybrid decomposition method and then availability measures such as instantaneous availability, interval availability, expected cumulative operational time are evaluated as special cases of performability. In addition to this evaluation, sensitivity analysis of the entire manufacturing system as well as each machining cell is performed, from which the time of a major repair policy and the optimal configuration among the alternative configurations of the system can be determined. Secondly, the recovery policies from the machine failures by computing the minimal number of redundant machines and also from the task failures by computing the minimum number of tasks equipped with detection schemes of task failure and reworked upon failure detection, to meet the timing requirements are optimized. Some numerical examples are presented to demonstrate the effectiveness of the work.

  • PDF

Fault-tolerance Performance Evaluation of Fieldbus for NPCS Network of KNGR

  • Jung, Hyun-Gi;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • In contrast with conventional fieldbus researches which are focused merely on real-time performance, this study aims to evaluate the real-time performance of the communication system including fault-tolerant mechanisms Maintaining performance in presence of recoverable faults is very important in case that the communication network is applied to a highly reliable system such as next generation Nuclear. Power. Plant (NPP). If the tie characteristics meet the requirements of the system, the faults will be recovered by fieldbus recovery mechanisms and the system will be safe. If the time characteristics can not meet the requirements, the faults in the fieldbus can propagate to the system failure. In this study, for the purpose of investigating the time characteristics of fieldbus, the recoverable faults are classified and then the formulas that represent delays including recovery mechanisms are developed. In order to validate the proposed approach, we have developed a simulation model that represents the Korea Next Generation Reactor (KNGR) NSSS Process Control System (NPCS). The results of the simulation show us the reasonable delay characteristics of the fault cases with recovery mechanisms. Using the simulation results and the system requirements, we also can calculate the failure propagation probability from fieldbus to outer system.

  • PDF

A Mutual Exclusion Algorithm in Asynchronous Distributed System with Failure Detectors (비동기적 분산시스템에서 고장 추적 장치를 이용한 상호배제 알고리즘 설계)

  • Park, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2457-2464
    • /
    • 2013
  • In this paper, we design and analyze a mutual exclusion algorithm, based on the Token and Failure detector, in asynchronous distributed systems. A Failure Detector is an independent module that detects and reports crashes of other processes. There are some of advantages in rewriting the Token-based ME algorithm using a Failure Detector. We show that the Token-based ME algorithm, when using Failure Detector, is more effectively implemented than the classic Token-based ME algorithm for synchronous distributed systems.

Performance Improvement of Lazy Scheme for an Efficient Failure Recovery of Mobile Host (이동 호스트의 효율적 결함 복구를 위한 Lazy 기법의 성능 개선)

  • Kwon, Won-Seok;Kim, Sung-Soo;Kim, Jai-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.2969-2979
    • /
    • 2000
  • A mobile host has failure causes such as failure of the mobile host, disconnection of the mobile host, and wireless link failure that have not been seen in traditional computing environments. So far there have been few studies on fault tolerance of a mobile host in mobile computing environments. The Lazy scheme, a failure recovery technique of the mobile host, is a cost-effective one. However, this scheme has a defect that the mobile host cannot be recovered from failure of the base station with acheckpoint of the mobile host. In this paper, we propose and evaluate the Redundant Lazy scheme for performance improvement of the Lazy scheme.

  • PDF

Post-Failure Walking of Quadruped Robots on a Rough Planar Terrain (비평탄 지형에서 사각 보행 로봇의 고장후 보행)

  • Yang Jung-Min;Park Yong Kuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.547-555
    • /
    • 2005
  • A fault-tolerant gait of multi-legged robots with static walking is a gait which can maintain gait stability and continue its walking against an occurrence of a leg failure. This paper proposes fault-tolerant gait planning of a quadruped robot walking over a rough planar terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. In this Paper, two-phase discontinuous gaits are presented as a new fault-tolerant gait for quadruped robots suffering from a locked joint failure. By comparing with previously developed one-phase discontinuous gaits, it is shown that the proposed gait has great advantages in gait performance such as the stride length and terrain adaptability. Based on the two-phase discontinuous gait, quasi follow-the-leader(FTL) gaits are constructed which enable a quadruped robot to traverse two-dimensional rough terrain after an occurrence of a locked joint failure. During walking, two front legs undergo the foot adjustment procedure for avoiding stepping on forbidden areas. The Proposed wait planning is verified by using computer graphics simulations.

Development of Leader Selection Algorithm to Support Fault Tolerance of Integrated Management Systems in the Naval Combat System (함정 전투체계에서 통합 통제 시스템의 고장 감내를 지원하기 위한 리더 선정 알고리즘 개발)

  • Seo, Yongjin;Jo, Jun Young;Kim, Hyeon Soo;Go, Youngkeun;Kim, Chum-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.382-391
    • /
    • 2019
  • The naval combat system is a distributed system in which various subsystems are integrated and operated together. The integrated management system(IMS) is a software system for systematically and consistently managing the application software which control and operate various devices in such a combat system. Since the malfunction or failure of such an IMS can disable the entire combat system, the IMS is more important than other application software of the combat system. In this paper, we propose a method to guarantee the stable and correct operation of the combat system. To this end, we propose a redundancy scheme composed of one leader and several followers so as to tolerate the failure situation of the IMS. We also propose a leader selection algorithm to select a new leader when the leader fails and can no longer perform its role. To verify the validity of the study, we verify the fault tolerance behavior of the system and the accuracy of the leader selection algorithm.

Kinematic Analysis of Fault-Tolerant 3 Degree-of-Feedom Spherical Modules (고장에 강인한 구형 3자유도 모듈에 관한 기구학적 해석)

  • 이병주;김희국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2846-2859
    • /
    • 1994
  • This work deals with kinematic analysis of fault-tolerant 3 degree-of-freedom spherical modules which have force redundancies in its parallel structure. The performance of a redundantly actuated four-legged module with no actuator failure, a single actuator failure, partial and half failure of dual actuator are compared to that of a three-legged module, in terms of maximum force transmission ratio, isotropic characteristics, and fault-tolerant capability. Additionally, a system with an excess number of small floating actuators is considered, and the contribution of these small actuators to the force transmission and fault-tolerant capability is evaluated. This study illustrates that the redundant actuation mode allows significant saving of input actuation effort, and also delivers a fault tolerance.

Fatigue Life Prediction using Fuzzy Reliability theory (퍼지신뢰성이론에 의한 피로수명 예측)

  • 심확섭;이치우;장건의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.672-675
    • /
    • 1995
  • Because of a sudden growth of the research of fatigue failure, recent machines or structures have been designed by damage tolerance design in many fields. Consequently, it is the most primary factor to clarity the specific character of fatique failure in the design of machines or structures considering reliability. A statistical analysis is required to analyze the outcome of an experiment or a life estimate by reason of that fatigue failure contains lots of random elements. Reliability analysis which has tukenn the place of the existing analyses in the consideration of the uncertainty of a material, is a very efficient way. Even reliability analysis, however, is not a perfect way to analyses the uncertainties of all the materials. This thesis would refer to a newly conceived data analysis that the coefficient of a system could cause the ambiguity of the relationship of an input and output.

  • PDF

A Safety Assessment Methodology for a Digital Reactor Protection System

  • Lee Dong-Young;Choi Jong-Gyun;Lyou Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 2006
  • The main function of a reactor protection system is to maintain the reactor core integrity and the reactor coolant system pressure boundary. Generally, the reactor protection system adopts the 2-out-of-m redundant architecture to assure a reliable operation. This paper describes the safety assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures such as the random hardware failures, common cause failures, operator errors, and the fault tolerance mechanisms implemented in the reactor protection system. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system, and applied to the reactor protection system being developed in Korea to identify design weak points from a safety point of view.