• Title/Summary/Keyword: Failure Stress

Search Result 2,888, Processing Time 0.026 seconds

Cr-Mo鋼 熔接熱影響部의 破壞靭性과 熔接入熱量에 관한 硏究 II

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 1987
  • Post weld heat treatment (PWHT) is carried out to increase the fracture toughness in heat affected zone(HAZ) and remove the residual stress. There occur some problems such as toughness decreement and stress relief cracking(SRC) in the coarse grained HAZ subjected to the effect of tempering treatment. Especially, embitterment of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface, that is, grain boundary failure. Therefore, in this paper, PWHT was carried out under the stress of 0, 10, 20 and $30kg/cm^2$ to simulate residual stress in HAZ welded by heat input of 10, 30 and 40KJ/cm. Applied stress in weld HAZ during PWHT assisted precipitin of over saturated alloying element in the structure, and grain boundary failure according to welding heat input didn't almost appear at the heat input of 10 KJ/cm, but it appeared from being the applied stress of $30kg/cm^2$ at $30KJ/cm and 20kg/mm^2$ at 40KJ/cm.

  • PDF

Failure Analysis of Connecting Rod at Small End (커넥팅로드 소단부 파단의 해석)

  • 민동균;전병희;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.382-390
    • /
    • 1995
  • Failure of connecting rod in automotive engine may cause catastrophic situation. The corner radius at small end has an effect on stress raising. To investigate the stress distribution in connecting rod during operation, the finite element analysis was used by giving possible maximum tension and compression. Excessive sizing after forging connecting rod may result in the tensile residual stress which lower the fatigue life and cause premature failures. It was shown that when the sizing amount is too large, the location of high tensile residual stress coincide with that of high stress amplitude during operation through the elastic-plastic finite element analysis. The endurance limit moves down due to the surface finish and decarburization, which combines with the movement of resultant stress points to dangerous range. It was concluded that the precise control of sizing and enough corner radius are necessary to a reliability of connecting rod.

Identification of Failure Cause for 300MW LP turbine Blade through Vibration Analysis (진동 해석을 통한 300MW급 저압터빈 블레이드의 손상 원인 규명)

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.794-799
    • /
    • 2005
  • The failure of blades frequently happened in the 300MW LP turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. one is 1,516 Hz which is related to the operating speed. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is per-formed to identify more accurate root cause for failure of blade row. It is confirmed that the dynamic stress of the latter is higher than one of the former. From these results, it is concluded that the former has deeply something to do with the failure of blades more than the latter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.

  • PDF

Plasticity and Fracture Behaviors of Marine Structural Steel, Part III: Experimental Study on Failure Strain (조선 해양 구조물용 강재의 소성 및 파단 특성 III: 파단 변형률에 관한 실험적 연구)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.53-65
    • /
    • 2011
  • This is the third of several companion papers dealing with the derivation of material constants for ductile failure criteria under hydrostatic stress. It was observed that the ultimate engineering stresses and elongations at fracture from tensile tests for round specimens with various notch radii tended to increase and decrease, respectively, because of the stress triaxiality. The engineering stress curves from tests are compared with numerical simulation results, and it is proved that the curves from the two approaches very closely coincide. Failure strains are obtained from the equivalent plastic strain histories from numerical simulations at the time when the experimental engineering stress drops suddenly. After introducing the new concept of average stress triaxiality and accumulated average strain energy, the material constants of the Johnson-Cook failure criterion for critical energies of 100%, 50%, and 15% are presented. The experimental results obtained for EH-36 steel were in relatively good agreement with the 100% critical energy, whereas the literature states that aluminum fits with a 15% critical energy. Therefore, it is expected that a unified failure criterion for critical energy, which is available for most kinds of ductile materials, can be provided according to the used materials.

Identification of Failure Cause for 300 MW LP Turbine Blade through Vibration Analysis (진동 해석을 통한 300 MW급 저압터빈 블레이드의 손상 원인 규명)

  • Bae, Yong-Chae;Lee, Hyun;Kim, Hee-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1100-1107
    • /
    • 2005
  • The failure of blades frequently happened in the 300 MW LP(low pressure) turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. One is 1,316 Hz. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is performed to identify more accurate root cause for failure of blade row It is confirmed that the dynamic stress of the former is higher than one of the latter From these results, it is concluded that the former has deeply something to do with the failure of blades more than the tatter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.

An experimental study on shear mechanical properties of clay-concrete interface with different roughness of contact surface

  • Yang, Wendong;Wang, Ling;Guo, Jingjing;Chen, Xuguang
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • In order to understand the shear mechanical properties of the interface between clay and structure and better serve the practical engineering projects, it is critical to conduct shear tests on the clay-structure interface. In this work, the direct shear test of clay-concrete slab with different joint roughness coefficient (JRC) of the interface and different normal stress is performed in the laboratory. Our experimental results show that (1) shear strength of the interface between clay and structure is greatly affected by the change of normal stress under the same condition of JRC and shear stress of the interface gradually increases with increasing normal stress; (2) there is a critical value JRCcr in the roughness coefficient of the interface; (3) the relationship between shear strength and normal stress can be described by the Mohr Coulomb failure criterion, and the cohesion and friction angle of the interface under different roughness conditions can be calculated accordingly. We find that there also exists a critical value JRCcr for cohesion and the cohesion of the interface increases first and then decreases as JRC increases. Moreover, the friction angle of the interface fluctuates with the change of JRC and it is always smaller than the internal friction angle of clay used in this experiment; (4) the failure type of the interface of the clay-concrete slab is type I sliding failure and does not change with varying JRC when the normal stress is small enough. When the normal stress increases to a certain extent, the failure type of the interface will gradually change from shear failure to type II sliding failure with the increment of JRC.

Interaction between opening space in concrete slab and non-persistent joint under uniaxial compression using experimental test and numerical simulation

  • Vahab Sarfarazi;Kaveh Asgari;Mehdi Kargozari;Pouyan Ebneabbasi
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • In this investigation, the interaction between opening space and neighboring joint has been examined by experimental test and Particle flow code in two dimension (PFC2D) simulation. Since, firs of all PFC was calibrated using Brazilian experimental test and uniaxial compression test. Secondly, diverse configurations of opening and neighboring joint were provided and tested by uniaxial test. 12 rectangular sample with dimension of 10 cm*10 cm was prepared from gypsum mixture. One quarter of tunnel and one and or two joint were drilled into the sample. Tunnel diameter was 5.5 cm. The angularities of joint in physical test were 0°, 45° and 90°. The angularities of joint in numerical simulation were 0°, 30°, 60°, -30°, -45°, -60° and its length were 2cm and 4cm. Loading rate was 0.016 m/s. Tensile strength of material was 4.5 MPa. Results shows that dominant type of crack which took place in the model was tensile cracks and or several shear bands develop within the model. The Final stress is minimum in the cases where oriented angle is negative. The failure stress decrease by decreasing the joint angle from 30° to 60°. In addition, the failure stress decrease by incrementing the joint angle from -30° to -60°. The failure stress was incremented by decreasing the number of notches. The failure stress was incremented by decreasing the joint length. The failure stress was incremented by decreasing the number of notches. Comparing experimental results and numerical one, showed that the failure stress is approximately identical in both conditions.

Dependency of Tangential Friction Angle and Cohesion of Non-linear Failure Criteria on the Intermediate Principal Stress (비선형 암석 파괴조건식의 접선 마찰각과 점착력의 중간주응력 의존성)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2013
  • Although Mohr-Coulomb failure criterion has limitations in that it is a linear criterion and the effect of the intermediate principal stress on failure is ignored, this criterion has been widely accepted in rock mechanics design. In order to overcome these shortcomings, the Hoek-Brown failure criterion was introduced and recently a number of 3-D failure criteria incorporating the effect of the intermediate principal stress on failure have been proposed. However, in many rock mechanics designs, the possible failure of rock mass is still evaluated based on Mohr-Coulomb criterion and most of practitioners are accustomed to understanding the strength of rock mass in terms of the internal friction angle and cohesion. Therefore, if the equivalent Mohr-Coulomb strength parameters of the advanced failure criteria are calculated, it is possible to take advantage of the advanced failure criteria in the framework of the Mohr-Coulomb criterion. In this study, a method expressing the tangential Mohr-Coulomb strength parameters in terms of the stress invariant is proposed and it is applied to the generalized Hoek-Brown criterion and the HB-WW criterion. In addition, a new approach describing the geometric meaning of the ${\sigma}_2$-dependency of failure criteria in 3-D principal stress space is proposed. Implementation examples of the proposed method show that the influence of the intermediate principal stress on the tangential friction angle and cohesion of the HB-WW criterion is considerable, which is not the case for the 2-D failure criterion.

Fracture Simulation of Low-Temperature High-Strength Steel (EH36) using User-Subroutine of Commercial Finite Element Code (상용 유한요소코드 사용자-서브루틴을 이용한 저온용 고장력강 (EH36)의 파단 시뮬레이션)

  • Choung, Joonmo;Nam, Woongshik;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.34-46
    • /
    • 2014
  • This paper discusses a new formulation for the failure strain in the average stress triaxiaility domain for a low-temperature high-strength steel (EH36). The new formula available at a low average stress triaxiality zone is proposed based on the comparison of two results from tensile tests of flat type specimens and their numerical simulations. In order to confirm the validity of the failure strain formulation, a user-subroutine was developed using Abaqus/Explicit, which is known to be one of the most popular commercial finite element analysis codes. Numerical fracture simulations with the user-subroutine were conducted for all the tensile tests. A comparison of the engineering stress-strain curves and engineering failure strain obtained from the numerical simulation with the user-subroutine for the tensile tests revealed that the newly developed user-subroutine effectively predicts the initiation of failure.

Prediction of the Failure Stress of Tofu Texture Using a Delay Time of Ultrasonic Wave (초음파의 지연 시간을 이용한 두부 조직의 물성변화 예측에 관한 연구)

  • Kim, Hak-Jung;Hahm, Young-Tae;Kim, Byung-Yong
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.325-329
    • /
    • 1995
  • Changes in the physical properties of soybean curd upon the processing conditions such as coagulant concentration, heating temperature and molding pressure were determined by using a failure stress and residual delay time of ultrasonic wave(5 MHz). Maximum failure stress of Tofu was obtained at the 0.3% $CaCl_2$ coagulant concentration, $95^{\circ}C$ heating temperature and greater molding pressure, respectively, whereas the delay time is inverse proportion to the failure stress value. The results of the multiple regression analysis with factorial design showed that the model equation consisted with delay time and processing conditions gave the good prediction of the Tofu failure stress.

  • PDF