• Title/Summary/Keyword: Failure Rate Model

Search Result 639, Processing Time 0.029 seconds

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

A Study on Optimal Spot-weld Layout Design of the Car Body Structure Using Topology Optimization (위상최적설계를 이용한 차체 점용접 배치 최적화 연구)

  • Kim, S.R.;Lee, C.W.;Kim, Mun-Yeong;Kim, C.M.;Yim, H.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.361-366
    • /
    • 2012
  • In this paper, we propose the efficient technique that reduces the number of spot-welds and increases the structural rigidity by using the topology optimization technique. Eigen value analysis is used to evaluate the rigidity of the optimized model. As a first step, the topology optimization is performed to find optimal spot-weld distributions. In this study, the design objective is to maximize the weighted frequencies. The volume fractions of the weld components are used as design constraints, and also the densities of each element in the individual design space are used as design variables. And then, to consider the possibility of spot-weld failure, the contribution rate analysis was performed by using the orthogonal array method of DOE. The spot-welds in the rear panel part are reinforced according to estimation results of the contribution rate analysis. Finally, we obtained optimized spot-weld layout model which has the reduced number of spot-welds and the improved dynamic stiffness.

  • PDF

A Study on Variation of Ultimate Pullout Resistance and Failure Behavior for Vertical Plate Anchors in Sands (앵커의 극한 지지력 변화와 파괴 거동에 관한 연구)

  • 장병욱;황명수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.71-80
    • /
    • 1990
  • Model tests for the ultimate pullout resistance of anchorages and investigation of failure behaviors in cohesionless soil have been conducted. The factors affecting the anchorage are mostly the geometry of the system, and soil properties of sands. The main conclusions of the experimental work were as follows. 1. The load - displacement relationship can be a form of parabolic curve for all plates. 2. The change in ultimate pullout resistance of anchor is mostly affected by embedment ratio and size of anchor, and influenced to a lesser degree by its shape. 3. Critical embedment ratio which is defined as the failure mode changes from shallow to deep mode is increased with increasing height of anchor. 4. For a constant anchor height, as the width of anchor increases the ultimate pullout resistance also increases. However, considering the efficiency of anchor for unit area, width of anchor does not appear to have any sigrnificant contribution on increasing anchor city. 5. Anchor capacity has a linear relation to sand density for any given section and the rate of change increases as the section increases. Critical depth determining the failure patterns of anchor is decreased with a decrease of sand density. 6. With increasing inclination angle, size of anchor, and decreasing embedment ratio, the ultimate pullout resistance of anchor under inclined loading is significantly decreased. 7. The ultimate pullout resistance of double anchor, a method of improving single of anchor capacity, is influenced by the center - to - center spacing adjacent anchors. It is also found that tandem and parallel anchor rigging arrangements decrease the anchor system capacity to less than twice the single anchor capacity due to anchor interference.

  • PDF

Verification of SPACE Code with MSGTR-PAFS Accident Experiment (증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증)

  • Nam, Kyung Ho;Kim, Tae Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

Evaluation for Risk Priority Number of Railway Power System Facility using Fuzzy Theory (퍼지이론을 이용한 철도 전력 설비의 Risk Priority Number 산정)

  • Lee, Yun-Seong;Byeon, Yoong-Tae;Kim, Jin-O;Kim, Hyung-Chul;Lee, Jun-Kyung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.921-926
    • /
    • 2009
  • The RPN provides information which includes the risk level and the priority order of maintenance tasks for components. However, if there is no sufficient historical failure data, the historical failure data from other sources can be applied to the target system. And if we use historical data from other sources without any process, there will be concomitant problems according to a discord of each system characteristic, a difference between the present and the date of failure data, etc. In this paper, a new methodology is proposed to model the failure rate as a fuzzy function to resolve these problems. Taking advantage of this result, the RPN can be calculated by using the fuzzy operation. The proposed method is applied to the substation system.

Critical Failure Condition of Reinforced Earth Wall by Photograph (사진촬영을 통한 보강토옹벽의 파괴조건 연구)

  • Ju, Jae-Woo;Kim, Seong-Tae;Kim, Jae-Young;Chang, Yong-Chai;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.380-387
    • /
    • 2004
  • Recently the geosynthetics reinforced retaining wall has been widely used instead of the steel reinforced retaining wall. The geosynthetics reinforced retaining wall is a very dangerous structure if the geosynthetics lose their strength about tension or if it lose their pullout resistence, but it was known that the geosynthetics reinforced wall had a great resistence and was a very safe structure against a earthquake or a dynamic load. It can be said that most important factors in the stability of the geosynthetics reinforced wall are the horizontal length of reinforcement and the vertical distance between two reinforcements. That is to say, as the length of reinforcement is longer, the structure is more stable and as the vertical distance between two reinforcements is shorter, it is more stable. In this study, in order to get the critical condition with a safety rate of 1, various kinds of model tests about geosynthetics reinforced wall has been performed. Photos by B-shutter method has been taken during tests and from photos, which show us the failure state, the critical condition about failure has been conformed. Accordingly the equation, which says the limit of stability in geosynthetics reinforced wall., has been proposed.

  • PDF

Renal function is associated with prognosis in stent-change therapy for malignant ureteral obstruction

  • Yoon, Ji Hyung;Park, Sejun;Park, Sungchan;Moon, Kyung Hyun;Cheon, Sang Hyeon;Kwon, Taekmin
    • Investigative and Clinical Urology
    • /
    • v.59 no.6
    • /
    • pp.376-382
    • /
    • 2018
  • Purpose: The authors performed this study to investigate the risk factors for predicting stent failure and to evaluate its impact on prognosis. Materials and Methods: Between January 2002 and March 2017, we retrospectively reviewed 117 consecutive patients who underwent retrograde ureteral stenting and exchanging at least once every 3 months for malignant ureteral obstruction. The patients were classified according to their pre-stenting chronic kidney disease (CKD) stage. The factors affecting stent failure were analyzed using a logistic regression model. Overall survival (OS) was estimated, and the prognostic significance of each variable was estimated using Cox proportional-hazards regression modeling. Results: Before stenting, 91 patients were CKD stages 1-3 and 26 patients were CKD stages 4-5. These two groups differed significantly only in pre-stenting estimated glomerular filtration rate (eGFR), bilateral obstruction, and pre-stenting pyuria. Among the 117 patients, stent failure occurred in 30 patients (25.6%), and there were no differences between the groups. Pre-stenting pyuria and post-stenting complications were significant predictors of stent failure. There were 79 deaths in total, including 56 in the CKD stages 1-3 group and 23 in the CKD stages 4-5 group. In the multivariate analysis predicting patient OS, pre-stenting eGFR and post-stenting disease progression were significant factors. Conclusions: Internal ureteral stenting was effective for maintaining renal function in malignant ureteral obstruction. However, it did not restore renal function, which is related to the prognosis of the patients. Therefore, to improve patients' renal function and prognosis, patients who require stenting must be quickly recognized and treated.

Prototype 모델 MDU의 신뢰도 예측

  • Kim, Joon-Yun;Jung, Hae-Seung;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.203-210
    • /
    • 2005
  • Prototype model of MDU(Master Data Unit), to be employed on KSLV-I, has been developed and tested being interfaced with other units. Before stepping into the development of engineering and flight model phases, we have carried out reliability prediction of prototype MDU in order to assure availability of the unit. This paper describes the method of reliability prediction of prototype MDU and prediction results based on MIL-HDBK-217F, 'Electronic Reliability Design Handbook'.

  • PDF

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Development of Target-Controlled Infusion system in Plasma Concentration. PART2: Design and Evaluation (혈중 목표 농도 자동 조절기(TCI) 개발 PART2: 시스템 구현 및 평가)

  • 안재목
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • Based on the 4-compartmental pharmacokinetic model developed in PART1, target-controlled infusion(TCI) pump system was designed and evaluated. The TCI system consists of digital board including microcontroller and digital signal process(DSP), analog board, motor-driven actuator, user friendly interface, power management and controller. It provides two modes according to the drugs: plasma target concentration and effect target concentration. Anaesthetist controls the depth of anaesthesia for patients by adjusting the required concentration to maintain both plasma and effect site in drug concentration. The data estimated in DSP include infusion rate, initial load dose, and rotation number of motor encoder. During TCI operation, plasma concentration. effect site concentration, awaken concentration, context-sensitive decrement time and system error information are displayed in real time. Li-ion battery guarantees above 2 hours without power line failure. For high reliability of the system, two microprocessors were used to perform independent functions for both pharmacokinetic algorithm and motor control strategy.