• Title/Summary/Keyword: Failure Rate Model

Search Result 631, Processing Time 0.033 seconds

A Probabilistic Corrosion Rate Estimation Model for Longitudinal Strength Members of Bulk Carriers

  • Paik, Jeom-Kee;Kim, Sung-Kyu;Lee, Sang-Kon;Park, Young-Eel
    • Journal of Ship and Ocean Technology
    • /
    • v.2 no.1
    • /
    • pp.58-70
    • /
    • 1998
  • Many bulk carrier losses have been reported of late, and one of the possible causes of such casualties is thought to be the structural failure of aging hulls in rough weather. Clearly, in such cases, vessels that start out belong adequate somehow become marginal later in life. Fatigue and corrosion related potential problems may be the most important factors affecting such age related vessel damage. With respect to fatigue, extensive studies have been done worldwide both experimentally and theoretically, and the results have been applied to some extent. However, in the case of corrosion effects, additional research is still needed to better understand, clarify and address the various strength uncertainties and their effects on structural behavior. This paper develops a probabilistic corrosion rate estimation model for the longitudinal strength members of bulk carriers. The model is based on available statistical data for corrosion of existing bulk carriers. The corrosion data collected are documented for future use.

  • PDF

The Calculation of Lightning Flashover rate of 345kV/154kV Transmission Tower (345kV 및 154kV 송전철탑의 뇌사고율 예측계산)

  • Shim, E.B.;Woo, J.W.;Kwak, J.S.;Min, B.W.;Hwang, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.452-454
    • /
    • 2001
  • This paper described the calculation results of lightning flashover rate on the 345kV and 154kV transmission system of KEPCO. The back-flashover rate and shielding failure rate was calculated by FLASH(lightning flashover rate calculation program from IEEE) and KEPRI's own program which is based on the EGM(Electro Geometrical Model) method. The estimated lightning flashover late of 345kV transmission system of double circuit was 1.0 flash per 100km-year, and the lightning flashover rate of 154kV transmission line was 2.0 flash Per 100km-year approximately.

  • PDF

Failure estimation of the composite laminates using machine learning techniques

  • Serban, Alexandru
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.663-670
    • /
    • 2017
  • The problem of layup optimization of the composite laminates involves a very complex multidimensional solution space which is usually non-exhaustively explored using different heuristic computational methods such as genetic algorithms (GA). To ensure the convergence to the global optimum of the applied heuristic during the optimization process it is necessary to evaluate a lot of layup configurations. As a consequence the analysis of an individual layup configuration should be fast enough to maintain the convergence time range to an acceptable level. On the other hand the mechanical behavior analysis of composite laminates for any geometry and boundary condition is very convoluted and is performed by computational expensive numerical tools such as finite element analysis (FEA). In this respect some studies propose very fast FEA models used in layup optimization. However, the lower bound of the execution time of FEA models is determined by the global linear system solving which in some complex applications can be unacceptable. Moreover, in some situation it may be highly preferred to decrease the optimization time with the cost of a small reduction in the analysis accuracy. In this paper we explore some machine learning techniques in order to estimate the failure of a layup configuration. The estimated response can be qualitative (the configuration fails or not) or quantitative (the value of the failure factor). The procedure consists of generating a population of random observations (configurations) spread across solution space and evaluating using a FEA model. The machine learning method is then trained using this population and the trained model is then used to estimate failure in the optimization process. The results obtained are very promising as illustrated with an example where the misclassification rate of the qualitative response is smaller than 2%.

Effects of number and angle of T Shape non persistent cracks on the failure behavior of samples under UCS test

  • Sarfarazi, V.;Asgari, K.;Maroof, S.;Fattahi, Sh
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.31-45
    • /
    • 2022
  • Experimental and numerical simulation were used to investigate the effects of angle and number of T shape non-persistent crack on the shear behaviour of crack's bridge area under uniaxial compressive test. concrete samples with dimension of 150 mm×150 mm×40 mm were prepared. Within the specimen, T shape non-persistent notches were provided. 16 different configuration systems were prepared for T shape non-persistent crack based on two and three cracks. In these configurations, the length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 30°, 60° and 90°. Similar to cracks configuration systems in the experimental tests, 28 models with different T shape non-persistent crack angle were prepared in numerical model. The length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 15°, 30°, 45°, 60°, 75° and 90°. Tensile strength of concrete was 1 MPa. The axial load was applied to the model. Displacement loading rate was controlled to 0.005 mm/s. Results indicated that the failure process was significantly controled by the T shape non-persistent crack angle and crack number. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the crack number and crack angle. The strength of samples decreased by increasing the crack number. In addition, the failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods (PFC2D).

A Study on Power Supply Method Design for Hot Standby Sparing System via Reliability Modeling (신뢰도모델링에 의한 이중계제어기 전원공급방식 설계에 관한 연구)

  • Shin, Duck-O;Lee, Kang-Mi;Lee, Jae-Ho;Kim, Yong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.527-532
    • /
    • 2007
  • In this paper, we suggest those two design plans for power supply method of Hot Standby Sparing System; one is the plan using MTBF based on Constant Failure Rate, and the plan using Reliability Function is the other. Traditionally, RBD (Reliability Block Diagram) is used for reliability prediction which is required to meet any requirements before system operation. However, the system that has redundancy, such as Hot Standby Sparing System, Is not suitable for system reliability modeling using combination model, such as RBD. In this paper, therefore, we demonstrate that for redundancy controller, redundancy modeling design toward fault occurrence design is more effective to build up a system with higher reliability and achieve the effectiveness of loss cost due to maintenance and failure occurred in operation, rather than combinational modeling design.

Development of Finite Element Ductile Tearing Simulation Model Considering Strain Rate Effect (변형률 속도를 고려한 유한요소 기반 연성 찢김 해석 기법 개발)

  • Nam, Hyun Suk;Kim, Ji Soo;Kim, Jin Weon;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.167-173
    • /
    • 2016
  • This paper proposes ductile failure simulation under high strain rate conditions using finite element (FE) analyses. In order to simulate a cracked component under a high strain rate condition, this paper applies the stress-modified fracture strain model combined with the Johnson/Cook model. The stress-modified fracture strain model determines the incremental damage in terms of stress triaxiality (${\sigma}_m/{\sigma}_e$) and fracture strain (${\varepsilon}_f$) for a dimple fracture using the tensile test results. To validate the stress-modified fracture strain model under dynamic loading conditions, the parameters are calibrated using the tensile test results under various strain rates and the fracture toughness test results under quasi-static conditions. The calibrated damage model predicts the CT test results under a high strain rate. The simulated results were then compared with the experimental data.

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Recovery Trajectory in Tachycardia Induced Heart Failure Model (빈맥을 이용한 심부전 모델에서 회복궤도)

  • 오중환;박승일;원준호;김은기;이종국
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.422-427
    • /
    • 1999
  • Background: Tachycardia induced heart failure model would be the model of choice for the dilated cardiomyopathy. This more closely resembles the clinical syndrome and does not require major surgical trauma, myocardial ischemia and pharmacological or toxic depression of cardiac function. When heart failure is progressive, application of new surgical procedures to the faling heart is highly risky. It has been shown that recovery trajectory from heart failure is a new method in decreasing animal mortality. The purpose is to establish the control datas for recovery trajectory in the canine heart failure model. Material and Method: 21 mongrel dogs were studied at 4 stages(baseline, at the heart failure, 4 and 8 weeks after recovery). Heart failure was induced during 4 weeks of continuous rapid pacing using a pacemaker. Eight weeks of trajectory of recovery period was allowed. Indices of left ventricular function and dimension were measured every 2 weeks and the hemodynamics were measured by use of Swan-Ganz catheterization and thermodilution method every 4 weeks. Values were expressed as mean${\pm}$standard deviation. Result: 4(20%) dogs died due to heart failure. Left ventricular end-diastolic volume at the 4 stages were 40.8${\pm}$7.4, 82.1${\pm}$21.1, 59.9${\pm}$7.7 and 46.5${\pm}$6.5ml. Left ventricular end-systolic volume showed the same trend. Ejection fractions were 50.6${\pm}$4.1, 17.5${\pm}$5.8, 36.3${\pm}$7.3, and 41.5${\pm}$2.4%. Blood pressure and heart rate showed no significant changes. Pressures of central vein, right ventricle, pulmonary artery, and pulmonary capillary wedge showed significant increase during the heart failure period, normalizing at the end of recovery period. Stroke volumes were 21.5${\pm}$8.2, 12.3${\pm}$3.5, 17.9${\pm}$4.6, and 15.5${\pm}$3.4ml. Blood norepinephrine level was 133.3${\pm}$60.0pg/dL at the baseline and 479.4${\pm}$327.3pg/dL at the heart failure stage(p=0.008). Conclusion: Development of tachycardia induced heart failure model is of high priority due to ready availability and reasonable amenability to measurements. Recovery trajectory after cessation of tachycardia showed reduction of cardiac dilatation and heart function. Application of new surgical procedures during the recovery period could decrease animal mortality.

  • PDF

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

The Study of Infinite NHPP Software Reliability Model from the Intercept Parameter using Linear Hazard Rate Distribution (선형위험률분포의 절편모수에 근거한 무한고장 NHPP 소프트웨어 신뢰모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.278-284
    • /
    • 2016
  • Software reliability in the software development process is an important issue. In infinite failure NHPP software reliability models, the fault occurrence rates may have constant, monotonic increasing or monotonic decreasing pattern. In this paper, infinite failures NHPP models that the situation was reflected for the fault occurs in the repair time, were presented about comparing property. Commonly, the software model of the infinite failures using the linear hazard rate distribution software reliability based on intercept parameter was used in business economics and actuarial modeling, was presented for comparison problem. The result is that a relatively large intercept parameter was appeared effectively form. The parameters estimation using maximum likelihood estimation was conducted and model selection was performed using the mean square error and the coefficient of determination. The linear hazard rate distribution model is also efficient in terms of reliability because it (the coefficient of determination is 90% or more) in the field of the conventional model can be used as an alternative model could be confirmed. From this paper, the software developers have to consider intercept parameter of life distribution by prior knowledge of the software to identify failure modes which can be able to help.