• Title/Summary/Keyword: Failure Pin

Search Result 148, Processing Time 0.032 seconds

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The mechanisms of wear are consisted of adhesion, abrasion, erosion and so on. Die wear affects the tolerances of formed parts, metal flow, and costs of process. The only way to control these failures is to develop a prediction method on die wear suitable in the design state in order to optimize the process. The wear system is used to analyse 'operating variables' and 'system structure'. In this study, with AISI D2, AISI 1020, AISI 304SS materials, a series of the wear experiments of pin-on-disk type to obtain the wear coefficients from Archard's wear model and the upsetting processes are carried out to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes are performed by the rigid-plastic finite element method. The result of the analysis is used to investigate the die wear the processes, and the analysis simulated die wear profiles are compared with the experimental measured die wear profiles.

  • PDF

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

Reliability Prediction of a Pin Puller (핀풀러 신뢰도 예측)

  • Lee, Hyo-Nam;Jang, Seung-Gyo;Oh, Jong-Yun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.625-631
    • /
    • 2013
  • Reliability of a pin puller was predicted by Monte Carlo simulation. The prediction method is based on the stress-strength interference model that failure occurs if the stress exceeds the strength. In this study, the strength is considered as the energy delivered by combustion of pyrotechnics to retreat the pin to a predetermined position, whereas the stress is regarded as the energy required to resist the pin movement. The former mainly depends on the amount of pyrotechnic charge and the latter is governed by several friction forces and the energy dissipation within locking mechanism. Both the variables of stress and strength were computed using an analytical performance model. The method presented here, not depending upon a large number of test item, can be applicable to predict the reliability of other kinds of pyrotechnic devices.

FMEA of Electrostatic Precipitator for Preventive Maintenance (전기집진기 예지보전 단계에서의 고장모드영향분석)

  • Han, Seung-Hun;Lee, Jeong-Uk;Lee, Sun-Youp;Hwang, Jong-Deok;Kang, Dae-Kon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.706-714
    • /
    • 2020
  • Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.

Failure Behavior of Pin-jointed Carbon/Epoxy Composites under Hygrothermal Environmentals (열습환경을 고려한 탄소섬유/에폭시 복합재의 핀 체결부 파괴거동)

  • Kim, Chan-Gyu;Hwang, Young-Eun;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.411-413
    • /
    • 2012
  • This study has been investigated about hygrothermal environmental effects on the pin-joined carbon/epoxy composites through acoustic emission technique. The specimens were classified as three types for pin loading test : Base (before immersion), RT (room temperature immersion), HT ($75^{\circ}C$ immersion). As a results, the bearing strength of RT specimens was weakly decreased than that of base specimens. The bearing strength of HT specimens was greatly decreased than that of Base and RT specimens due to effects of simultaneous moisture and higher temperature. Also, the results from cumulative hit of acoustic emission indicated that AE events induced by matrix cracks of HT specimens was lower than that of base specimens.

  • PDF

Behaviors of RC Beams Repaired with FRP-Rod by Use of Anchoring Pin (정착 앵커를 이용한 FRP-Rod 보수 RC 보의 거동)

  • Kim, Chung Ho;Jang, Hee Suk;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.151-157
    • /
    • 2008
  • It is difficult for existing beams to ensure the sufficient embedding depth due to constructional cause. Owing to these problems, currently FRP-Rod embedding repair method run parallel with a section increasing method in many case. In this study, anchor pin was adopted to solving the problems of the sliding of FRP-Rod and the unified behaviors of the repaired beam without increasing the section. In the experiments, split failure of covering concrete and slippage of the FRP-Rod were not occurred. it was confirmed that FRP-Rod shown the integrate behaviors with RC beam till the repaired beams destroyed.

Development of Failure Mechanism for Rotorcraft Landing Gear (회전익기 착륙장치 파손장치 개발)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Jeong-Sun;Park, Chong-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.497-501
    • /
    • 2008
  • To improve occupants' safety in an emergency, crashworthy design is necessary to rotorcraft design and development. To improve crashworthiness capability, most of the crash energy should be absorbed by rotorcraft and the energy transmitted to the occupants should be minimized. To absorb the crash energy efficiently, the individual energy attenuation provided by landing gear, structure, fuel tank and seats should be considered totally. Especially, landing gear has the important role for crashworthy design because landing gear absorbs relatively large energy for the crash landing. In addition, military specifications require failure of landing gear shall not increase danger to any occupants by penetration of the airframe. To meet the specification requirements, failure mechanism should be prepared so that landing gear is collapsed safely and doesn't penetrate the airframe. In this study, design of failure mechanism which is necessary for the rotorcraft landing gear was performed and the results were presented.

  • PDF

Experimental investigation on strength of CFRST composite truss girder

  • Yinping Ma;Yongjian Liu;Kun Wang
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.667-679
    • /
    • 2023
  • Concrete filled rectangular steel tubular (CFRST) composite truss girder is composed of the CFRST truss and concrete slab. The failure mechanism of the girder was different under bending and shear failure modes. The bending and shear strength of the girder were investigated experimentally. The influences of composite effect and shear to span ratio on failure modes of the girder was studied. Results indicated that the top chord and the joint of the truss were strengthened by the composited effect. The failure modes of the specimens were changed from the joint on top chord to the bottom chord. However, the composite effect had limited effect on the failure modes of the girder with small shear to span ratio. The concrete slab and top chord can be regarded as the composite top chord. In this case, the axial force distribution of the girder was close to the pin-jointed truss model. An approach of strength prediction was proposed which can take the composite effect and shear to span ratio into account. The approach gave accurate predictions on the strength of CFRST composite truss girder under different bending and shear failure modes.

Reliability Analysis of Stowage System of Container Crane using Subset Simulation with Markov Chain Monte Carlo Sampling (마르코프 연쇄 몬테 카를로 샘플링과 부분집합 시뮬레이션을 사용한 컨테이너 크레인 계류 시스템의 신뢰성 해석)

  • Park, Wonsuk;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.54-59
    • /
    • 2017
  • This paper presents an efficient finite analysis model and a simulation-based reliability analysis method for stowage device system failure of a container crane with respect to lateral load. A quasi-static analysis model is introduced to simulate the nonlinear resistance characteristics and failure of tie-down and stowage pin, which are the main structural stowage devices of a crane. As a reliability analysis method, a subset simulation method is applied considering the uncertainties of later load and mechanical characteristic parameters of stowage devices. An efficient Markov chain Monte Carlo (MCMC) method is applied to sample random variables. Analysis result shows that the proposed model is able to estimate the probability of failure of crane system effectively which cannot be calculated practically by crude Monte Carlo simulation method.

Durability Evaluation of Platform Safety Step System (승강장 안전발판 시스템의 내구성 평가)

  • Park, Min Heung;Kwak, Hee Man;Kim, Min Ho
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • Purpose: The purpose of this study is to evaluate durability of platform safety step system in railway. Method: We performed finite element analysis & durability analysis of platform safety step system with VPD (Virtual Product Development) techniques and examined the durability standard & qualification life through the rig test during no failure test time in reliability qualification test. We continued to test 1 million cycles in KRS (Korea Railway Standard) for system's robust design performance. Result: FEM analysis results are 14.9MPa & 14.7MPa of pin-joint, pivot and durability analysis result is above 1 million cycles. we calculated theoretically no failure test time 855,000 cycles and through the 1 million cycles durability rig test in KRS standard we confirmed product quality. Conclusion: This platform safety step system was designed very safe in terms of a mechanical strength & durability.