• 제목/요약/키워드: Failure Mode Analysis

Search Result 1,029, Processing Time 0.03 seconds

Determination of Key Elements Using FTA/FMEA Safety Techniques for Precedent Research Stage of Defense R&D Programs (국방 선행연구단계에서 안전분석 기법 FTA/FMEA의 활용을 통한 핵심요소의 결정)

  • Choi, Se Keun;Kim, Young-Min;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.50-61
    • /
    • 2018
  • A precedent defense project study was carried out in the early stage of the project to support efficient determination of the acquisition method of the determined weapons system. A precedent study in the early stage of the project has been neglected, but lack of performance and increased costs are continuing problems. In a precedent study on a number of items within a limited time frame, expected risks during project implementation were not identified and reduced by failing to review the key review element in depth. Therefore, in this paper, we studied the application of the FTA/FMEA technique used in the system safety analysis process to identify key factors to be considered when carrying out the defense research project. The methodology for the development of the key review items was established through the improvement of the FTA/FMEA technique in order to meet specific conditions and given conditions. Based on the results of this study, we redefined core key factors in the precedent study stage, thereby eliminating unnecessary and anticipated risks that may arise in the future project management aspects of the defense project. It is anticipated that this will reduce costs and time in terms of the lifecycle of the weapon system and promote stable operation of the project through reduction of risk.

The Evaluation of the atomic composition and the surface roughness of Titanium Implants following Various Laser treatment with air-powder abrasive (레이저 처리후 임프란트 표면 변화에 관한 연구)

  • Kim, Tae-Jung;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.615-630
    • /
    • 2002
  • Various long-term studies have shown that titanium implants as abutments for different types of prostheses have become a predictable adjunct in the treatment of partially or fully edentulous patients. The continuous exposure of dental implants to the oral cavity with all its possible contaminants creates a problem. A lack of attachment, together with or caused by bacterial insult, may lead to peri-implantitis and eventual implant failure. Removal of plaque and calculus deposits from dental titanium implants with procedures and instruments originally made for cleaning natural teeth or roots may cause major alterations of the delicate titanium oxide layer. Therefore, the ultimate goal of a cleaning procedure should be to remove the contaminants and restore the elemental composition of the surface oxide without changing the surface topography and harming the surrounding tissues. Among many chemical and mechanical procedure, air-powder abrasive have been known to be most effective for cleaning and detoxification of implant surface. Most of published studies show that the dental laser may be useful in the treatment of pen-implantitis. $CO_2$ laser and Soft Diode laser were reported to kill bacteria of implant surface. The purpose of this study was to obtain clinical guide by application these laser to implant surface by means of Non-contact Surface profilometer and X-ray photoelectron spectroscopy(XPS) with respect to surface roughness and atomic composition. Experimental rough pure titanium cylinder models were fabricated. All of them was air-powder abraded for 1 minute and they were named control group. And then, the $CO_2$ laser treatment under dry, hydrogen peroxide and wet condition or the Soft Diode laser treatment under Toluidine blue O solution condition was performed on the each of the control models. The results were as follows: 1. Mean Surface roughness(Ra) of all experimental group was decreased than that of control group. But it wasn't statistically significant. 2. XPS analysis showed that in the all experimental group, titanium level were decreased, when compared with control group. 3. XPS analysis showed that the level of oxygen in the experimental group 1, 3($CO_2$ laser treatment under dry and wet condition) and 4(Soft Diode laser was used under toluidine blue O solution) were decreased, when compared with control group. 4. XPS analysis showed that the atomic composition of experimental group 2($CO_2$ laser treatment under hydrogen peroxide) was to be closest to that of control group than the other experimental group. From the result of this study, this may be concluded. Following air-powder abrasive treatment, the $CO_2$ laser in safe d-pulse mode and the Soft Diode laser used with photosensitizer would not change rough titanium surface roughness. Especially, $CO_2$ laser treatment under hydrogen peroxide gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.

Failure Mode and Effect Analysis for Remanufacturing of the Old Extrusion Press (노후 압출기의 재제조를 위한 고장모드 영향분석)

  • Jung, Hang-Chul;Yun, Sang-Min;Oh, Sang-Ho;Baeg, Chang Hyun;Kong, Man-Sik
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • In the domestic aluminum industry, the extrusion process is a major process accounting for more than 40% of the total production. However, most domestic aluminum extrusion companies produce aluminum using old equipment that is more than 30 years old. Extrusion press is when the equipment is not replaced before the wear and breakage of major parts occur, reducing productivity and increasing the defect rate compared to new equipment. The old extrusion press often loses part drawings, so it is difficult to repair them properly on-site and to remanufacture them due to the lack of technical skills for maintenance. Therefore, a systematic remanufacturing plan must be designed from dismantling the equipment. In this study, remanufacturing FMEA was devised to remanufacture old extrusion press. The risk priority was analyzed by considering the degree of damage to the recycled parts, the cycle due to breakage/damage during the extrusion process, and the value of recycling resources due to remanufacturing. To standardize the remanufacturing process, remanufactured FMEA was performed through part analysis according to the structural analysis of the extrusion press. In addition, remanufacturing priorities were selected for each part, while remanufacturing itself was studied for efficiency of resource circulation and product quality stabilization.

INFLUENCE OF LIGHT IRRADIATION OVER SELF-PRIMING ADHESIVE ON DENTIN BONDING (상아질접착제에 대한 광조사가 접착에 미치는 영향)

  • 류현욱;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.409-417
    • /
    • 2001
  • The purpose of this study was to investigate the influence of light irradiation over self-priming adhesive on dentin bonding. After acid etching the exposed dentin, a self-priming adhesive (Prime&Bond$^{\circledR}$NT dental adhesive system Dentsply DeTrey, GmbH, Konstanz, Germany) was applied and light irradiation was done for 20 sec with regular intensity (600 mW/$\textrm{cm}^2$) in group I and for 3 sec with ultra-high intensity (1930 mW/$\textrm{cm}^2$) in group III. No light irradiation was done over self-priming adhesive in groups II and IV. Composite resin was added on the self-priming adhesive and irradiated for 40 sec with regular intensity (600 mW/$\textrm{cm}^2$) in groups I and II and for 3 sec with ultra-high intensity (1930 mW/$\textrm{cm}^2$) in groups III and IV. To see the effect of light curing time on dentin bonding, another 3 group specimens were prepared. Without light-irradiation over self-priming adhesive, added composite resin was irradiated for 3, 6, or 12 sec with ultra-high intensity light. After bonded specimens were stored in 37$^{\circ}C$ distilled water for 24 hours, shear bond strength were measured using a universal testing machine (4202, Instron, Instron Co., U.S.A.) and fractured surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan). Statistical analysis were done with one-way, two-way ANOVA and chi-square test. The results were as follows : 1. The shear bond strengths from the groups irradiated over self-priming adhesive were significantly higher than those from the groups without irradiation (p<0.05). 2. There was no significant shear bond strength difference between regular intensity light irradiation groups and ultra-high intensity ones (p>0.05). 3. There was no significant shear bond strength difference among various irradiation time groups with ultra-high intensity ones (p>0.05). 4. In stereomicroscopic examination of fractured surfaces, adhesive-cohesive mixed failure mode was mostly seen in all groups, and there was no significant difference in failure mode among groups (p>0.05).

  • PDF

Shear Capacity of Reinforced Concrete Continuous T-Beams Externally Strengthened with Wire Rope Units (와이어로프로 외부 보강된 철근콘크리트 연속 T형 보의 전단내력)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.773-783
    • /
    • 2007
  • A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is developed. Six two-span continuous T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested. The main variables investigated were the amount and prestressing force of wire rope units. All specimens had the same geometrical dimension and arrangement of internal reinforcement. Influence of the distribution of vertical stresses in beam web owing to the prestressing force of wire rope units on the diagonal shear cracking load and the ultimate shear capacity of beams tested is presented. Based on the current study, it can be concluded that the amount and initial prestress of wire rope should be limited to be above 2.5 times the minimum shear reinforcement ratio specified in ACI 318-05 and below 0.6 times its own tensile strength, respectively, to ensure the enhancement of shear capacity and ductile failure mode of the strengthened beams. A numerical analysis based on the upper-bound theorem is developed to assess the shear capacity of continuous T-beams strengthened with wire rope units. From the comparisons of measured and predicted shear capacities, a better agreement is achieved in the proposed numerical analysis than in empirical equations recommended by ACI 318-05.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

Flexural Performance of PHC Piles with Infilled concrete and Longitudinal Reinforcing Bars (속채움 콘크리트 및 길이방향 철근으로 보강된 PHC 파일의 휨성능)

  • Han, Sun-Jin;Lee, Jungmin;Kim, Min-Seok;Kim, Jae-Hyun;Kim, Kang Su;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, flexural tests of prestressed high strength spun concrete (PHC) piles reinforced with infilled concrete and longitudinal rebars were conducted, where the longitudinal rebar ratio and the presence of sludge formed on the inner surface of PHC pile were set as key test variables. A total of six PHC pile specimens were manufactured, and their flexural behaviors including failure mode, crack pattern, longitudinal strain distribution in a section and end slip between external PHC pile and infilled concrete were measured and discussed in detail. The test results revealed that the flexural stiffness and strength increased as the longitudinal rebar ratio became larger, and that the sludge formed on the inner surface of PHC pile did not show any detrimental effect on the flexural performance. In addition to the experimental approach, this study presents a nonlinear flexural analysis model considering compatibility conditions and strain and stress distributions of the PHC piles and infilled concrete. The rationality of the nonlinear flexural analysis model was verified by comparing it with test results, and it appeared that the proposed model well evaluated the flexural behavior of PHC piles reinforced with infilled concrete and longitudinal rebars with a good accuracy.

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact (구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성)

  • Jang, Seok-Joon;Son, Seok-Kwon;Kim, Yong-Hwan;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.411-418
    • /
    • 2015
  • This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.

Effects of conventional and self-etching adhesive systems on bond strength of orthodontic attachments bonded to erupted and unerupted teeth (치아 맹출 유무에 대한 자가부식 접착제에 의한 교정용 부착장치의 접착강도)

  • Nur, Metin;Uysal, Tancan;Yesilyurt, Cemal;Bayram, Mehmet
    • The korean journal of orthodontics
    • /
    • v.40 no.4
    • /
    • pp.267-275
    • /
    • 2010
  • Objective: The aim of this study was to evaluate and compare the shear bond strength (SBS) and failure-mode of orthodontic buttons bonded to erupted and unerupted teeth with conventional and self-etching adhesive systems. Methods: Eighty-four erupted and 84 unerupted, human third-molar teeth were used. For both groups, the buccal surfaces of each tooth were assigned one of the following type of adhesive systems (n = 12). A, Conventional systems: 1, Transbond XT (3M Unitek, Monrovia, CA, USA); 2, Prime & Bond NT (Dentsply/Caulk, Milford, USA); 3, Single Bond (3M ESPE, Minnesota, USA); and B, Self-etching adhesives; 4, Clearfil SE Bond (Kuraray, Okayama, Japan); 5, Transbond Plus (3M Unitek, Monrovia, CA, USA); 6, Clearfil S3 (Kuraray, Tokyo, Japan); 7, G Bond (GC, Tokyo, Japan). The SBSs of the attachments and the adhesive remnant index (ARI) scores were recorded. Data were analyzed with analysis of variance (ANOVA), independent-sample t-test and chi-square tests. Results: When the SBSs of erupted and unerupted teeth were compared, only the Clearfil-SE Bond and G-Bond were significantly different. Bond strengths of all adhesive systems were higher in unerupted teeth than erupted teeth, except the Single-Bond system. Conclusions: When using conventional adhesives, bonding to erupted and unerupted teeth may not be significantly different. However, clinicians need to take into consideration the types of self-etching systems before usage.