• Title/Summary/Keyword: Failure Envelope

Search Result 72, Processing Time 0.017 seconds

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.

Full Mouth Rehabilitation (완전 구강 회복술)

  • Lee, Seung-Kyu;Lee, Sung-Bok;Kwon, Kung-Rock;Choi, Dae-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.171-185
    • /
    • 2000
  • The treatment objectives of the complete oral rehabilitation are : (1) comfortably functioning temporomandibular joints and stomatognathic musculature, (2) adherence to the basic principle of occlusion advocated by Schuyler, (3) anterior guidance that is in harmony with the envelope of function, (4) restorations that will not violate the patient's neutral zone. There may be many roads to achieving these objectives, but they all convey varing degrees of stress and strain on the dentist and patient. There are no "easy" cases of oral rehabilitation. Time must be taken to think, time must be taken to plan, and time must be taken to perform, since time is the critical element in both success and failure. Moreover, a systematized and integrated approach will lead to a prognosis that is favorable and predictable. This approach facilitates development of optimum oral function, comfort, and esthetics, resulting in a satisfied patient. Such a systematized approach consists of four logical phase : (1) patient evaluation, (2) comprehensive analysis and treatment planning, (3) integrated and systematic reconstruction, and (4) postoperative maintenance. Firstly, we must evaluate the mandibular position. The results of a repetitive, unstrained, nondeflective, nonmanipulated mandibular closure into complete maxillomandibular intercuspation is not so much a "centric" occlusion as it is a stable occlusion. Accordingly, we ought to concern ourselves less with mandibular centricity and more with mandibular stability, which actually is the relationship we are trying to establish. The key to this stability is intercuspal precision. Once neuromuscular passivity has been achieved during an appropriate period of occlusal adjustment and provisionalization, subsequent intercuspal precision becomes the controlling factors in maintaining a stable mandibular position. Secondly, we must evaluate the planned vertical dimension of occlusion in relationship to what may now be an altered(generally diminished), and avoid the hazard of using such an abnormal position to indicate ultimate occlusal contacting points. There are no hard and fast rules to follow, no formulas, and no precise ratios between the vertical dimension of occlusion. Like centric relation, it is an area, not a point.

  • PDF