• 제목/요약/키워드: Failure Effect Probability

검색결과 175건 처리시간 0.033초

Effect of Boundary Conditions of Failure Pressure Models on Reliability Estimation of Buried Pipelines

  • Lee, Ouk-Sub;Pyun, Jang-Sik;Kim, Dong-Hyeok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권6호
    • /
    • pp.12-19
    • /
    • 2003
  • This paper presents the effect of boundary conditions in various failure pressure models published for the estimation of failure pressure. Furthermore, this approach is extended to the failure prediction with the aid of a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with each corrosion defect in buried pipelines for long exposure period with unit of years. A failure probability model based on the von-Mises failure criterion is adapted. The log-normal and standard normal probability functions for varying random variables are adapted. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically investigated for the corrosion pipeline by using an adapted failure probability model and varying failure pressure model.

부식 배관의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline)

  • 이억섭;편장식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

부식 배관의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on failure Probability of Corrosion Pipeline)

  • 이억섭;편장식
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2002년도 정기학술대회
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

시스템의 치명도 분석을 위한 고장영향확률 정량화 방안 연구 (A Study on the Quantitative Determination of Failure Effect Probability for Criticality Analysis on System)

  • 이명석;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.31-37
    • /
    • 2019
  • The inter-development of FMECA is very important to assess the effect of potential failures during system operation on mission, safety and performance. Among these, criticality analysis is a core task that identifies items with high risk and selects the analyzed objects as the key management targets and reflects their effects to the design optimization. In this paper, we analyze the theory related to criticality analysis following US military standard, and propose a method to quantify the failure effect probability for objective criticality analysis. The criticality analysis according to the US military standard depends on the subjective judgment of the failure probability. The methodology for quantifying the failure effect probability is presented by using the reliability theory and the Bayes theorem. The failure rate is calculated by applying the method to quantify failure effect probability.

지반침하가 매설배관의 건전성에 미치는 영향 (Effect of Ground Subsidence on Reliability of Buried Pipelines)

  • 이억섭;김동혁
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.173-180
    • /
    • 2004
  • This paper presents the effect of varying boundary conditions such as ground subsidence, internal pressure and temperature variation for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function incorporating with von-Mises failure criteria is used in order to estimate the probability of failure mainly associated with three cases of ground subsidence. Using stresses on the buried pipelines, we estimate the probability of pipelines with von-Mises failure criterion. The effects of varying random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the pipeline crossing ground subsidence regions which have different soil properties.

파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가 (Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines)

  • 이억섭;김의상;김동혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

Reliability Estimation of Buried Gas Pipelines in terms of Various Types of Random Variable Distribution

  • Lee Ouk Sub;Kim Dong Hyeok
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1280-1289
    • /
    • 2005
  • This paper presents the effects of corrosion environments of failure pressure model for buried pipelines on failure prediction by using a failure probability. The FORM (first order reliability method) is used in order to estimate the failure probability in the buried pipelines with corrosion defects. The effects of varying distribution types of random variables such as normal, lognormal and Weibull distributions on the failure probability of buried pipelines are systematically investigated. It is found that the failure probability for the MB31G model is larger than that for the B31G model. And the failure probability is estimated as the largest for the Weibull distribution and the smallest for the normal distribution. The effect of data scattering in corrosion environments on failure probability is also investigated and it is recognized that the scattering of wall thickness and yield strength of pipeline affects the failure probability significantly. The normalized margin is defined and estimated. Furthermore, the normalized margin is used to predict the failure probability using the fitting lines between failure probability and normalized margin.

Surge Tank가 설치된 상수도관망에서 부정류를 고려한 불능확률 산정 (Calculation of Probability of System Failure for Pipe Network with Surge Tank regarding Unsteady Flow)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제23권3호
    • /
    • pp.295-303
    • /
    • 2009
  • In the present study, a reliability analysis calculating the probability of system failure has been performed using cut set and results of numerical analysis for unsteady flow in pipe. Especially, the probability of system failure has been evaluated regarding the effect of valve closure which is a really important activity in operation of piping system. In spite of small amount of demand, it was found that fast valve closure can generate high probability of system failure. Furthermore, it was confirmed that surge tank can reduce the unsteady effects and probability of system failure in water distribution system. From the results, it was found that the unsteady flow has a significant effect on the probability of system failure Furthermore, it was able to find which pipe or cut set has high probability of system failure. So it could be used to determine which pipe or cut set has a priority of repair and replacement. Therefore, reliability analysis regarding unsteady flow has to be performed for the planning, designing, maintenance, and operation of piping system.

Failure Probability of Corrosion Pipeline with Varying Boundary Condition

  • Lee, Ouk-Sub;Pyun, Jang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.889-895
    • /
    • 2002
  • This paper presents the effect of external corrosion, material properties, operation condition and design thickness in pipeline on failure prediction using a failure probability model. The predicted failure assessment for the simulated corrosion defects discovered in corroded pipeline is compared with that determined by ANSI/ASME B31G code and a modified B31G method. The effects of environmental, operational, and random design variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress and pipe thickness on the failure probability are systematically studied using a failure probability model for the corrosion pipeline.

매설배관의 경계조건이 파손확률에 미치는 영향 (Effect of Boundary Conditions on Failure Probability of Buried Pipeline)

  • 이억섭;편장식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.311-316
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as internal fluid pressure, external soil, traffic loads, temperature change and corrosion on failure probability of the buried pipes are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

  • PDF