• 제목/요약/키워드: Failure Criticality

검색결과 75건 처리시간 0.029초

철도급전시스템의 신뢰도기반 점검주기 산정 (The Evaluation of Inspection Period based on Reliability in Railway Traction Power Systems)

  • 김형철
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1177-1183
    • /
    • 2013
  • In this paper, the analysis of inspection period bases on reliability is suggested in the field of traction power system. Even though there are several maintenance models, the most commonly used maintenance assessment has been focused on time based maintenance in real traction power systems. The maintenance intervals are selected on the basis of long-time experience. It ensures high availability and exact planning of staff. Reliability centered maintenance, which evaluates criticality and severity of each failure mode, achieves the operation, maintenance, and cost-effective improvement that will manage the risks of equipment. This paper deals with electrification in railway inspection frequency and applied reliability based inspection frequency instead of constant intervals. The distribution function of failure rate in traction power system belongs to Weibull function. Also, the fault data and the number of installed equipments for electrifications are collected. The failure history is investigated and classified in detail. Though these complicated procedures, it contribute to extend equipment lifetime and to reduce maintenance costs.

KSLV-I 상단부에 대한 신뢰성 분석과 신뢰도 모델링 (Reliability Analysis and Reliability Modeling for KSLV-I Upper Stage)

  • 신명호;조상연
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.183-193
    • /
    • 2008
  • 본 논문은 KSLV-I 상단부에 대한 고장모드 분석 결과와 시스템 수준의 비행시험 신뢰도 모델을 기술한다. 먼저, KSLV-I 상단부의 14개의 주요 기능과 비행시험 임무 프로파일을 분석하고, 기능 분석 결과와 임무 구간별 수행 기능 목록을 바탕으로 시스템 체계에 따른 상단부의 고장모드 계층 구조와 시스템 수준의 비행시험 신뢰도 모델을 구성한다.

  • PDF

수소충전소용 수소 충전 노즐의 고장 유형 및 영향분석 (A Study on Failure Mode and Effect Analysis of Hydrogen Fueling Nozzle Used in Hydrogen Station )

  • 김주현;조계용;지상원
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.682-688
    • /
    • 2023
  • In this paper, analyzes the type of failure and its effect on the hydrogen fueling nozzle used in hydrogen station. Failure of hydrogen fueling nozzle was analyzed using a qualitative risk assessment method, failure mode and effect analysis. The failure data of hydrogen fueling nozzles installed in domestic hydrogen stations are collected, and the failure types are classified, checked the main components causing the failure. Criticality analysis was derived based on frequency and severity depending on the failure mode performed. A quality function is developed by a performance test evaluation item of the hydrogen fueling nozzle, and the priority order of design characteristics is selected. Through the analysis results, the elements to improve the main components for enhancing the quality and maintenance of the hydrogen fueling nozzle were confirmed.

FRACAS에 기반한 군 무기체계의 고장분석 워크플로우 구축에 대한 연구 (A Study on the Development of FRACAS-based Failure Analysis Workflow for Military weapon system)

  • 이민영;김완걸;김경수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제10권2호
    • /
    • pp.93-105
    • /
    • 2010
  • The following thesis provides an explanation for the definition of the MIL-HDBK-2155 : Failure Reporting, Analysis and Corrective Action System (FRACAS), which systemizes the collection and analysis of failure data and the feedback process of the results. It also presents a plan based on MIL-HDBK-2155 for the collection and analysis of operating specifications on weapon systems. The collection and analysis of failure data and the feedback process utilizing FRACAS contributes to identifying improvement requirements during equipment operation as well as finding and eliminating the root cause of the failures. The objective of applying FRACAS to weapon systems is to receive source data feedback for reliability enhancements and performance improvements during operation. This is done by recognizing weaknesses in the design or operation by identifying the type of failures that might occur, and by performing Failure Modes, Effects and Criticality Analysis(FMECA) and Failure Tree Analysis(FTA).

Application of Reliability Centered Maintenance Strategy to Safety Injection System for APR1400

  • Rezk, Osama;Jung, JaeCheon;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.41-58
    • /
    • 2016
  • Reliability Centered Maintenance (RCM) introduces a systematic method and decision logic tree for utilizing previous operating experience focused on reliability and optimization of maintenance activities. In this paper RCM methodology is applied on safety injection system for APR-1400. Functional Failure Mode Effects and Criticality Analysis (FME&CA) are applied to evaluate the failure modes and the effect on the component, system and plant. Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The results show that increasing the condition based maintenance will reduce component failure and improve reliability and availability of the system. Also the extension of the surveillance test interval of Safety Injection Pumps (SIPs) would lead to an improved pump's availability, eliminate the unnecessary maintenance tasks and this will optimize maintenance activities.

자기부상열차 RAM DATA 관리방안 (Review on RAM Data Management to Urban Maglev Transit)

  • 이창덕;강찬용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2007
  • This paper is reviewed RAM(Reliability, Availability and Maintainability) data table utilized for RAM data management to Urban Maglev Transit. As railway systems become more complex, the RAM requirements are reinforced to ensure that a design meets Reliability, Availability, Maintainability criteria. Therefore, it needs the efficient management for RAM data of railway system to meet RAM target. At this study, RAM data management format is suggested to ensure reliability and maintainability based on acquired experience for overseas rolling stock. This RAM data table and FMECA(Failure Mode Effect Criticality Analysis) table are useful to the calculation of MTBF(Mean Time Between Failure), MTBSF(Mean Time Between Service Failure) and Maintainability. Also, this RAM management table will be efficient to improve the RAM evaluation to Urban Maglev Transit.

  • PDF

철도신호 내장형제어기 안전성 향상을 위한 워치독타이머 설계 및 평가 (Design and Assessment of a Watch Dog Timer for Safety Improvement of an Embedded Railway Signal Controller)

  • 신덕호;이강미;이재호;김용규
    • 한국철도학회논문집
    • /
    • 제10권6호
    • /
    • pp.730-734
    • /
    • 2007
  • 본 논문은 철도신호 내장형제어기의 정지결함검출을 위해 적용되는 워치독타이머 설계와 관련하여 FMEA와 FTA를 통해 타이머 결함발생을 시스템이 인식하지 못하는 은폐고장(Hidden Failure)의 심각성을 제시한다. 은폐고장은 결함허용을 목적으로 추가된 소자의 결함발생으로 인한 시스템의 신뢰성 및 안전성의 저하이다. 이러한 은폐고장으로 인해 안전무결성레벨이 저하된 상태로 시스템이 운용되는 젓을 방지하기 위해 본 논문에서는 바이탈워치독타이머를 설계하고, 결함발생에 대한 회로의 안전성을 평가하여 기존 설계로 인한 안전성저하 문제가 보완되었음을 입증한다.

시스템 구성품의 위험 심각도를 반영한 안전중시 시스템의 설계 모듈화에 관한 연구 (On the Development of Modularized Structures for Safety-Critical Systems by Analyzing Components Failure)

  • 김영민;이재천
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.11-19
    • /
    • 2014
  • Modern systems development becomes more and more complicated due to the need on the ever-increasing capability of the systems. In addition to the complexity issue, safety concern is also increasing since the malfunctions of the systems under development may result in the accidents in both the test and evaluation phase and the operation phase. Those accidents can cause disastrous damages if explosiveness gets involved therein such as in weapon systems development. The subject of this paper is on how to incorporate safety requirements in the design of safety-critical systems. As an approach, a useful system structure using the method of design structure matrix (DSM) is studied while reflecting the need on systems safety. Specifically, the effects of system components failure are analyzed and numerically modeled first. Also, the system components are identified and their interfaces are represented using a component DSM. Combining the results of the failure analysis and the component DSM leads to a modified DSM. By rearranging the resultant DSM, a modular structure is derived with safety requirements incorporated. As a case study, application of the approach is also discussed in the development of a military UAV plane.

ECA 기법을 이용한 해양구조물의 결함 평가 (Flaw Assessment on an Offshore Structure using Engineering Criticality Analysis)

  • 강범준;김유일;류철호;기혁근;박성건;오영태
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.435-443
    • /
    • 2015
  • Offshore structure may be considerably vulnerable to fatigue failure while initial flaw propagates under cyclic loading, so crack propagation analysis/fracture/yield assessments about initial flaw detected by NDT are necessarily required. In this paper, case studies have been conducted by flaw assessment program using engineering criticality analysis (ECA) approach. Variables such as flaw geometry, flaw size, structure geometry, dynamic stress, static stress, toughness, crack growth rate, stress concentration factor (SCF) affected by weld are considered as analysis conditions. As a result, the safety of structure was examined during fatigue loading life. Also, critical initial flaw size was calculated by sensitivity module in the developed program. The flaw assessments analysis using ECA approach can be very useful in offshore industries owing to the increasing demand on the engineering criticality analysis of potential initial flaws.

퍼지-FMEA기법을 이용한 차량탑재형 고소작업대 사고의 주요 유해위험요소 위험우선순위 결정 (Determination of Critical Hazard Factors in Vehicle-Mounted MEWP using Fuzzy-FMEA)

  • 오세윤;이강돈;신재호;임재용
    • 한국안전학회지
    • /
    • 제38권1호
    • /
    • pp.9-17
    • /
    • 2023
  • In this study, we aimed to identify the important hazard factors and determine their criticality in causing serious accidents in vehicle-mounted mobile elevated work platforms (MEWPs). Fuzzy failure modes and effects analysis (FMEA)was performed using accident data and a survey of experts. To determine the hazard factors, the accident data for the last 10 years were used and a questionnaire survey was designed. The questionnaire survey was sent to four experts in the field of occupational safety to determine the severity, occurrence, and detectability of serious accidents in MEWPs. Furthermore, objective RPN scores and risk priority were obtained using fuzzy FMEA. Finally, the criticality of hazard factors in descending order was found to be overloading, non-installation or defective installation of outriggers, breakage due to wire rope aging, and illegal remodeling of vehicle structures. The results were verified by comparing the occurrence data of serious disasters.