• Title/Summary/Keyword: Failure Cost

Search Result 1,229, Processing Time 0.029 seconds

주기적 예방보전의 최적정책에 관한 연구

  • Na Myeong Hwan;Son Yeong Suk;Kim Mun Ju
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.115-120
    • /
    • 2005
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal period time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost rate per unit time. Finally, it suppose that the failure time of a system has a Weibull distribution as an example and we obtain an expected cost rate per unit time the optimal period time and the number when cost of replacement and cost of minimal repair change.

  • PDF

Cost Analysis Model for Periodic Maintenance Policy with Maintenance Cost Factor (보전비용요소를 고려한 정기보전정책의 비용분석모델)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.287-295
    • /
    • 1995
  • This paper is concerned with cost analysis model in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Mimimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a new item until tile periodic maintenance time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to scale parameter of failure distribution. Maintenance cost factors are included operating, fixed, minimal repair, periodic maintenance and new item replacement cost. Numerical example is shown in which failure time of system has weibull distribution.

  • PDF

The Correlations among the Categorized Quality Cost Factors on Small & Medium-sized Enterprises (국내 중소 제조기업의 품질비용 행태에 관한 실증 연구)

  • Koo, Il-Seob;Lee, Sang-Choon;Jang, Kwang-Soon;Kim, Yong-Bum
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.185-193
    • /
    • 2011
  • The successful and sustainable growth of SMEs depends on their ability of strengthen their competitiveness in quality and cost and service more than anything else as a fundamental of operation. Among these key competitive factors of SMEs, quality is the most critical factor in manufacturing business fields. There are many different ways to improve the quality performance but it needs proper management decision to choose the best way what can maximize outputs with minimum inputs. And it needs effective measurement methods and some indicators to analysis the quality performance properly. The quality cost is one of the simplest key indicators to measure the quality performance and the effectiveness of quality related management decisions. In this study, through survey on local SMEs, we found that their average annual quality cost ratio versus turnover - total amount of annual quality cost divided by annual turnover - is around 3.69% excluded some SME's performances what have different quality control measures with others. And we found some results what corresponded with the early studies on the correlations between those categorized quality costs factors and some discrepancies between some of the literature model and the early case study results as follows. There were negative correlations between the Prevention costs and the External failure costs, and the Appraisal costs and the External failure costs, and there was positive correlation between the Appraisal costs and Internal failure costs same as early studies. But, we couldn't found any strong negative correlations between the Cost of control - Prevention costs & Appraisal costs - and the Cost of Failure of control - Internal & External failure costs -.

The Comparative Software Development Cost Model Considering the Change in the Shape Parameter of the Erlang Distribution (어랑분포의 형상모수 변화에 따른 소프트웨어 개발 비용모형에 관한 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.566-572
    • /
    • 2016
  • Software Reliability implemented in software development is one of the most important issues. In finite failure NHPP software reliability models for software failure analysis, the hazard function that means a failure rate may have constant independently for failure time, non-increasing or non-decreasing pattern. In this study, software development cost analysis considering the variable shape parameter of Erlang distribution as the failure life distribution in the software product testing process was studied. The software failure model was applied finite failure Non-Homogeneous Poisson Procedure and the parameters approximation using maximum likelihood estimation was accompanied. Thus, this paper was presented comparative analysis by applying a software failure time data to the software, considering the shape parameter of Erlang distribution for development cost model analysis. When compared to the cost curve in accordance with the shape parameter, the model of smaller shape can be seen that the optimal software release time delay and more cost. Through this study, it is thought that it can serve as a preliminary information which can basically help the software developers to search for development cost according to software shape parameters.

On the New Age Replacement Policy (새로운 연령교체 방식의 개발)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.280-286
    • /
    • 2016
  • Purpose: Recently, Jiang defines the tradeoff B life to minimize a sum of life lost by preventive maintenance (PM) and corrective maintenance (CM) contribution parts and sets up an optimal replacement age of age replacement policy as this tradeoff life. In this paper, Jiang's model only considering the known lifetime distribution is extended by assigning different weights to two parts of PM and CM in order to reflect the practical maintenance situations in application. Methods: The new age replacement model is formulated and the meaning of a weight factor is expressed with the implied cost of failure under asymptotic expected cost model and also discussed with one-cycle expected cost criterion. Results: The proposed model is applied to Weibull and lognormal lifetime distributions and optimum PM replacement ages are derived with corresponding implied cost of failure. Conclusion: The new age replacement policy to escape the estimation of cost of failure in classical asymptotic expected cost criterion based on the renewal process is provided.

Cost Analysis for Periodic Maintenance Policy with Minimal Repair (응급수리를 고려한 정기보전정책의 비용분석)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.139-146
    • /
    • 1995
  • This study is concerned with cost analysis in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Minimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a spate until the periodic time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to maintenance period and scale parameter of failure distribution. Total cost factors ate included operating, fixed, minimal repair, periodic maintenance and replacement cost Numerical example is shown in which failure time of system has erlang distribution.

  • PDF

Cost Analysis Model for Minimal Repair in Free-Replacement Policy (무상수리 정책에서 응급수리 적용의 비용분석 모델)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.241-247
    • /
    • 1997
  • This paper is concerned with cost analysis model in free-replacement policy. The free-replacement policy with minimal repair is considered as follows; in a manufacturer's view point operating unit is periodically replaced, if a failure occurs between minimal repair and periodic maintenance time, unit is remained in a failure condition. Also unit undergoes minimal repair at failures in minimal-repair interval. Then total expected cost is calculated according to the parameter of failure distribution in a view of consumer's. The expected costs are included repair cost and usage cost: operating, fixed, minimal repair and loss cost. Numerical example is shown in which failure time of item has weibull distribution.

  • PDF

Cost and reliability of retrofit alternatives for schools located on seismic zones

  • De Leon-Escobedo, David;Garcia-Manjarrez, Jose Luis
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2021
  • A formulation based on structural reliability and cost effectiveness is proposed to provide recommendations to select the best retrofit strategy for schools with reinforced concrete frames and masonry walls, among three proposed alternatives. The cost calculation includes the retrofit cost and the expected costs of failure consequences. Also, the uncertainty of the seismic hazard is considered for each school site. The formulation identifies the potential failure modes, among shear and bending forces for beams, and flexure-compression forces for columns, for each school, and the seismic damages suffered by the schools after the earthquake of September 17, 2017 are taken into account to calibrate the damaged conditions per school. The school safety level is measured through its global failure probability, instead of only the local failure probability. The proposed retrofit alternatives are appraised in terms of the cost/benefit balance under future earthquakes, for the respective site seismic hazard, as opposed to the current practice of just restoring the structure original resistance. The best retrofit is the one that corresponds to the minimum value of the expected life cycle cost. The study, with further developments, may be used to develop general recommendations to retrofit schools located at seismic zones.

An Economic Design of a k-out-of-n System

  • Yun, Won-Young;Kim, Gue-Rae;Gopi Chattopadhyay
    • International Journal of Reliability and Applications
    • /
    • v.4 no.2
    • /
    • pp.51-56
    • /
    • 2003
  • A k-out-of-n system with n identical and independent components is considered in which the components takes two types of function: 0 (open-circuit) or 1 (closed) on command (e.g. electromagnetic relays and solid state switches). Components are subject to two types of failure on command: failure to close or failure to open. In our k-out-of-n system, failure of (n-k)+1 or more components to close causes to the close failure of the system, or failure of k or more components to open causes the open failure of the system. The long-run average cost rate is obtained. We find the optimal k minimizing the long run average cost rate for given n. A numerical example is presented.

  • PDF

종속 고장을 가지는 원형 Consecutive-k-out-of-n:F 시스템의 경제적 설계

  • 윤원영;김귀래;고용석;류기열
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.387-395
    • /
    • 2000
  • Circular consecutive-k-out-of-n:F system when the failure of component is dependent is studied. We assume that the failure of a component in the system increase the failure rate of the survivor which is working just before the failed component. In this case, a mean time to failure (MTTF), a average failure number of the system, and the expected cost per unit time are obtained. Then the minimum number of consecutive failed components to cause system failure to minimize the expected cost per unit time is determined as searching paths to system failure. And various numerical examples are studied.

  • PDF