• Title/Summary/Keyword: Factory Process

Search Result 702, Processing Time 0.032 seconds

A Case Study on the Facilities Layout with FactoryCAD in a Boiler Factory (FactoryCAD를 이용한 보일러 제조업체의 설비배치 사례연구)

  • Sohn, Kwon-Ik;Kim, Sung-Joon;Kim, Wan-Young
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.79-88
    • /
    • 2002
  • This paper deals with a case study on the process improvement and the layout design of a boiler factory with FactoryCAD. Firstly, two alternatives of job reallocation are suggested with the understanding of problems in current process. The layout planning for these new alternatives is carried out by simple procedure and the detailed analyses are performed by the aid of FactoryCAD program. The result shows that the new layout plan brings on about 10% reduction of travel distance. The utilization of FactoryCAD program can simplify the process of layout design.

  • PDF

Process Life Cycle Assessment with Modified Allocating Method in PCB Producing Factory

  • Haepyo Chun;Kim, Young-Suk;Han, Sung-Ho;Han, Myung-Keun;Lee, Hong-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.301-306
    • /
    • 2001
  • Applying life cycle assessment in PCB (printed circuit board) production, most of environmental impacts come from outside-factory-process due to power generation, especially, and other raw material productions. Relatively, small environmental impacts of inside-factory-process make it difficult to compare them. To overcome this problem allocating environmental impacts of outside-factory-process on inside-factory-process. It helps to identify the environmental impacts of each process and find sources of environmental impacts. Also, life cycle assessment shows reduction of environmental impacts after copper recycling process.

  • PDF

Operational Problem Analysis and Improvement Plan in the Smart Factory Promotion Process

  • Lee, Seong-Hoon;Lee, Dong-Woo
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.273-278
    • /
    • 2022
  • Uncertainty is increasing around the world due to COVID-19 and Ukraine crisis. In this situation, each company is making countless efforts to survive. In Korea, smart factory projects targeting small and medium-sized businesses with difficulties have been continuously promoted. As for the smart factory business that has been promoted so far, the base expansion of the smart factory is also steadily increasing as the number of companies carrying out the project is increasing. It was also found that it contributed to productivity improvement and quality improvement. Despite these positive aspects, difficulties and operational problems are also appearing in the process of promoting smart factories. In this study, we investigated and analyzed operational problems and difficulties in the process of promoting smart factories. In addition, improvement plans for problems were presented according to the contents of this analysis, and improvement plans were presented by classifying them into introduction and supply companies, considering that the smart factory business is formed in the form of a consortium between introduction and supply companies.

Factory Production Management of Modular Units Using MFD 2019 (MFD 2019를 활용한 모듈러 유닛의 공장생산 관리)

  • Lee, Doo-Yong;Nam, Sung-Hoon;Lee, Jae-Sub;Jung, Dam-I;Kim, Kyoung-rai;Cho, Bong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.139-146
    • /
    • 2019
  • The modular building system is a type of prefabricated construction method, and is an industrialized building system that transports, assembles, and completes a three-dimensional module manufactured in a factory to the site. The economics of a modular building system where 50 to 80% of the entire process takes place in a modular factory is dominated by productivity of the factory manufacturing process. Since the building of the module is finished by the combination of unit parts produced by each material, it is necessary to manage the process in each module unit. However, currently marketed process control programs do not reflect the features of these modular methods. In this paper, we introduce Modular Factory Design software(MFD 2019) that can make modular unit production plan which reflects production base(modular factory) and production target(application and number of modular units). In order to verify software compatibility and reliability, two production plans with different production methods were formulated and simulated.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Plan for Risk Reduction of Smart Factory Process through Accident Analysis and Status Survey (재해분석과 실태조사를 통한 스마트 팩토리 공정의 위험성 감소 방안)

  • Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.22-32
    • /
    • 2022
  • The domestic smart factory is being built and spread rapidly, mainly by mid-sized companies and large enterprises according to the government's active introduction and support policy. But these factories only promote production system and efficiency, so harmfulness and risk factors are not considered. Therefore, to derive harmful risk factors in terms of industrial safety for 12,983 government-supported smart factory workplaces from 2014 to 2019, industrial accident status analysis compared workplaces with automation facilities and government-supported workplaces with automation facilities. Also, to reduce risks associated with domestic smart factory processes, twenty government-supported workplaces with automation facilities underwent analysis, evaluating risks through a status survey using the process evaluation table. In addition, the status survey considered region, size, industry, construction level, and accident rate; the difference in risk according to the structure of the process was confirmed. Based on the smart factory process evaluation results, statistical analysis confirmed that serial, parallel, and hybrid structures pose different risk levels and that the risks of mixed structures are greater. Finally, safety control system application was presented for risk assessment and reduction in the smart factory process, reflecting the results of disaster analysis and actual condition investigation.

The Built of Smart Factory Using Sensors and Virtual Process Design (센서와 가상 공정설계를 활용한 스마트 팩토리 구축)

  • So, Byeong-Eob;Shin, Sung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1071-1080
    • /
    • 2017
  • Recently, the terms of the 4th Industrial Revolution and the Smart Factory are often heard through news and media. But most of the companies that are parties are not interested. Because there is no specific guidance on how to build Smart Factory and information about Smart Factory. The built of the Smart Factory should be carried out in accordance with the size of the company considering the purpose of the introduction. In the existing study, they analyzed successful cases of building Smart Factory in Korea As a result, in the case of large-size firms, it is an effective strategy that expanding from a model factory to whole factory for successful Smart Factory building. In addition, in the case of medium and small-size firms, it is an effective strategy that upgrading from low-level step to high-level step for successful Smart Factory building. In this study, selecting medium and small-size firms, and bottleneck section and processes requiring improvement are identified through 3D virtual process design, and then install sensors. Finally, after analyzing the data collected through the sensor, we will improve the process and build Smart Factory with improved productivity.

Linking Algorithm between IoT devices for smart factory environment of SMEs (중소기업의 스마트팩토리 환경을 위한 IoT 장치 간 연계 알고리즘)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.233-238
    • /
    • 2018
  • SMEs and small enterprises are making various attempts to manage SMEs in terms of equipment, safety and energy management as well as production management. However, SMEs do not have the investment capacity and it is not easy to build a smart factory to improve management and productivity of SMEs. In this paper, we propose a smart factory construction algorithm that partially integrates the factory equipment currently operated by SMEs. The proposed algorithm supports collection, storage, management and processing of product information and release information through IoT device during the whole manufacturing process so that SMEs' smart factory environment can be constructed and operated in stages. In addition, the proposed algorithm is characterized in that central server manages authentication information between devices to automate the linkage between IoT devices regardless of the number of IoT devices. As a result of the performance evaluation, the proposed algorithm obtained 13.7% improvement in the factory process and efficiency before building the Smart Factory environment, and 19.8% improvement in the processing time in the factory. Also, the cost of input of manpower into process process was reduced by 37.1%.

Application of Smart Factory Model in Vietnamese Enterprises: Challenges and Solutions

  • Quoc Cuong Nguyen;Hoang Tuan Nguyen;Jaesang Cha
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.265-275
    • /
    • 2024
  • Smart factory is a remarkable development from traditional manufacturing systems to data-based smart manufacturing systems that can connect and process data continuously, collected from machines, production equipment to production and business processes, capable of supporting workers in making decisions or performing work automatically. Smart factory is the key and center of the fourth industrial revolution, combining improvements in traditional manufacturing activities with digital technology to help factories achieve greater efficiency, contributing to increased revenue and reduce operating costs for businesses. Besides, the importance of smart factories is to make production more quality, efficient, competitive and sustainable. Businesses in Vietnam are in the process of learning and applying smart factory models. However, the number of businesses applying the pine factory model is still limited due to many barriers and difficulties. Therefore, in this paper we conduct a survey to assess the needs and current situation of businesses in applying smart factories and propose some specific solutions to develop and promote application of smart factory model in Vietnamese businesses.

A Comparative Case Study on Taiwanese and Korean Semiconductor Companies' Background and Process of Direct Investment in China: Focused on Investment of Factory Facility (한국과 대만 반도체기업들의 중국내 직접투자 배경과 과정에 대한 비교사례연구: 공장설립 투자를 중심으로)

  • Kwun, Young-Hwa
    • International Area Studies Review
    • /
    • v.20 no.2
    • /
    • pp.85-111
    • /
    • 2016
  • Global semiconductor companies is investing enormous capital worldwide. And direct investment in China is increasing greatly these days, Especially, global semiconductor companies are setting up a factory in China due to expanding market rather than utilizing low labor cost. Therefore, this study is trying to analyze the background and process of direct investment from global Korean and Taiwanese semiconductor companies in China. Firstly, In 1996, Samsung semiconductor established a back end process factory in Suzhou. And in 2014, Samsung semiconductor set up a front and back end factory in Xian. Secondly, In 2006, SK Hynix built a front and back end factory in Wuxi. and SK Hynix set up a back end factory named Hitech semiconductor with Chinese company in 2009. Later in 2015, SK Hynix established a back end factory in Chongqing. Thirdly, In 2004, TSMC started to operate a factory in Shanghai, and in 2018, TSMC is going to establish a factory in Nanjing. Lastly, UMC bought a stock to produce product in Chinese local company named HJT, and at the end of 2016, UMC is going to finish building a factory in Xiamen. As a result, it was proved that most companies hoped to expand the chinese market by setting up a factory in china. In addition, Samsung expected to avoid a risk by setting up a factory in china, and SK Hynix wanted to avoid a countervailing duty by setting up a factory in china. Based on the result of this study, this study indicates some implications for other semiconductor companies which are very helpful for their future foreign direct investment.