• Title/Summary/Keyword: Factorization Machines Learning

Search Result 2, Processing Time 0.188 seconds

Compare to Factorization Machines Learning and High-order Factorization Machines Learning for Recommend system (추천시스템에 활용되는 Matrix Factorization 중 FM과 HOFM의 비교)

  • Cho, Seong-Eun
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.731-737
    • /
    • 2018
  • The recommendation system is actively researched for the purpose of suggesting information that users may be interested in in many fields such as contents, online commerce, social network, advertisement system, and the like. However, there are many recommendation systems that propose based on past preference data, and it is difficult to provide users with little or no data in the past. Therefore, interest in higher-order data analysis is increasing and Matrix Factorization is attracting attention. In this paper, we study and propose a comparison and replay of the Factorization Machines Leaning(FM) model which is attracting attention in the recommendation system and High-Order Factorization Machines Learning(HOFM) which is a high - dimensional data analysis.

In-depth Recommendation Model Based on Self-Attention Factorization

  • Hongshuang Ma;Qicheng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.721-739
    • /
    • 2023
  • Rating prediction is an important issue in recommender systems, and its accuracy affects the experience of the user and the revenue of the company. Traditional recommender systems use Factorization Machinesfor rating predictions and each feature is selected with the same weight. Thus, there are problems with inaccurate ratings and limited data representation. This study proposes a deep recommendation model based on self-attention Factorization (SAFMR) to solve these problems. This model uses Convolutional Neural Networks to extract features from user and item reviews. The obtained features are fed into self-attention mechanism Factorization Machines, where the self-attention network automatically learns the dependencies of the features and distinguishes the weights of the different features, thereby reducing the prediction error. The model was experimentally evaluated using six classes of dataset. We compared MSE, NDCG and time for several real datasets. The experiment demonstrated that the SAFMR model achieved excellent rating prediction results and recommendation correlations, thereby verifying the effectiveness of the model.