• 제목/요약/키워드: Factorial design of experiments

검색결과 193건 처리시간 0.029초

실험계획법을 이용한 전자부품 위치정렬장치 최적 운영조건 사례연구 (A Study on Optimal Operation Conditions for an Electronic Device Alignment System by Using Design of Experiments)

  • 이동헌;이미림;배석주
    • 품질경영학회지
    • /
    • 제43권3호
    • /
    • pp.453-466
    • /
    • 2015
  • Purpose: The purpose of this study is to design a systematic method to estimate optimal operation conditions of design variables for an electronic device alignment system. Method: The 2-level factorial design and the central composite design are used in order to plan experiments. Based on the experiment results, a regression model is established to find optimal conditions for the design variables. Results: 3 of 5 design variables are selected as major factors that affect the alignment system significantly. The optimized condition for each variable is estimated by using a sequential experiment plan and a quadratic regression model. Conclusion: The method designed in this study provides an efficient and systematic plan to select the optimized operation condition for the design variables. The method is expected to improve inspection accuracy of the system and reduce the development cost and period.

실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments)

  • 권병두;고태조;정종윤;정원지;이춘만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 1997
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut and feed rate are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

  • PDF

Reliability analyses of a prototype soil nail wall using regression models

  • Sivakumar Babu, G.L.;Singh, Vikas Pratap
    • Geomechanics and Engineering
    • /
    • 제2권2호
    • /
    • pp.71-88
    • /
    • 2010
  • Soil nailing technique is being widely used for stabilization of vertical cuts because of its economic, environment friendly and speedy construction. Global stability and lateral displacement are the two important stability criteria for the soil nail walls. The primary objective of the present study is to evaluate soil nail wall stability criteria under the influence of in-situ soil variability. Finite element based numerical experiments are performed in accordance with the methodology of $2^3$ factorial design of experiments. Based on the analysis of the observations from numerical experiments, two regression models are developed, and used for reliability analyses of global stability and lateral displacement of the soil nail wall. A 10 m high prototype soil nail wall is considered for better understanding and to highlight the practical implications of the present study. Based on the study, lateral displacements beyond 0.10% of vertical wall height and variability of in-situ soil parameters are found to be critical from the stability criteria considerations of the soil nail wall.

요인 실험분석에 의한 SB 라텍스 개질 콘크리트의 강도예측 (Strength Estimation of Stylene-Butadien Latex Modified Concrete by Factorial Experimental Design)

  • 윤경구;이주형;홍창우
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.307-315
    • /
    • 2001
  • The purpose of this study was to provide the evaluation and prediction of strengths of SB latex modified concrete(LMC) using a statistical method and factorial experimental design method. The main experimental variables were as follows ; W/C ( 4 levels ; 31, 33, 35, 42%), S/a( 2 levels ; 55, 58%) and L/C(2 levels ; 5, 15%). The compressive strength and flexural strength of LMC were selected as a factor of response. The statistical method was carried out to analyze the results, together with factorial experimental design method and response surface method. The analysis showed that if L/C had been 15%, W/C appeared to be around 33% to achieve the design strength of $350kgf/cm^2$. In this case, the flexural strength and the slump came to around $68kgf/cm^2$ and 18cm, respectively. Eventhough the L/C varied, the design strength and W/C could be predictable together with slump value and flexural strength. As a result of series of experiments in this study, W/C and L/C were proved to be the main factors influencing on the compressive and flexural strength of LMC. Both of strength and slump values could be predictable from the mixing proportion of LMC.

  • PDF

실험계획법과 반응표면법을 이용한 효율적인 신뢰도 기법의 개발 (An efficient Reliability Analysis Method Based on The Design of Experiments Augmented by The Response Surface Method)

  • 이상훈;곽병만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.700-703
    • /
    • 2004
  • A reliability analysis and design procedure based on the design of experiment (DOE) is combined with the response surface method (RSM) for numerical efficiency. The procedure established is based on a 3$^n$ full factorial DOE for numerical quadrature using explicit formula of optimum levels and weights derived for general distributions. The full factorial moment method (FFMM) shows good performance in terms of accuracy and ability to treat non-normally distributed random variables. But, the FFMM becomes very inefficient because the number of function evaluation required increases exponentially as the number of random variables considered increases. To enhance the efficiency, the response surface moment method (RSMM) is proposed. In RSMM, experiments only with high probability are conducted and the rest of data are complemented by a quadratic response surface approximation without mixed terms. The response surface is updated by conducting experiments one by one until the value of failure probability is converged. It is calculated using the Pearson system and the four statistical moments obtained from the experimental data. A measure for checking the relative importance of an experimental point is proposed and named as influence index. During the update of response surface, mixed terms can be added into the formulation.

  • PDF

래핑의 공정변수가 표면거칠기에 미치는 영향 (Effect of Process Parameters on Surface Roughness in Lapping Operation)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제12권4호
    • /
    • pp.9-13
    • /
    • 2013
  • Lapping is a very complicated and random process resulting from the variation of abrasive grains in its sizes and shapes and from the numerous factors having an effect on the process quality. This paper presents a study of a $2^4$ full factorial experimental design and analysis to optimize surface quality in lapping operation. The optimization of the factors to obtain minimum surface roughness was carried out by incorporating effect plots, main effect plots, interaction plots, analysis of variance(ANOVA), surface plots, and contour plots. The statistical design experiments, designed to reduce the total number of experiments required, indicated that, within the selected conditions, all the parameters influenced at a significance level of 5%. In addition, some of the possible interactions between these parameters also influenced the lapping process, especially those that were of third order. A regression model was suggested and fitted the experimental data very well.

Balanced Experimental Designs for cDNA Microarray data

  • 최규정
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 PROCEEDINGS OF JOINT CONFERENCEOF KDISS AND KDAS
    • /
    • pp.121-129
    • /
    • 2006
  • Two color or cDNA microarrays are extensively used to study relative expression levels of thousands of genes simultaneously. 0かy two tissue samples can be hybridized on a single microarray slide. Thus, a microarray slide necessarily forms an incomplete block design with block size two when more than two tissue samples are under study. We also need to control for variability in gene expression values due to the two dyes. Thus, red and green dyes form the second blocking factor in addition to slides. General design problem for these microarray experiments is discussed in this paper. Designs for factorial cDNA microarrays are also discussed.

  • PDF

요인실험계획을 이용한 수도관 생물막 형성 영향 인자의 효과 분석 (Analysis of Effects of Factors Influencing Biofilm Formation in Drinking Water Distribution Pipe Using Factorial Experimental Design)

  • 박세근;최성찬;김영관
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.181-192
    • /
    • 2005
  • This study evaluated the effect of factors influencing the initial biofilm formation in drinking water distribution pipe by running experiments using a $2^{4-1}$ fractional factorial experimental design with a replicate. Important variables used for assessing biofilm formation included BDOC(biodegradable dissolved organic carbon), viable heterotrophic bacteria present in drinking water, water temperature, and shear stress at two levels each. Based on the statistical analysis of biofilm levels measured as attached HPC(heterotrophic plate count) and community-level assay, the main factors that have significant effects on biofilm formation were found to be viable heterotrophic bacteria and BDOC. Water temperature only exhibited significant effect on the levels of attached HPC, while shear stress was not a significant factor under given conditions. Moreover, the statistical analysis revealed that interactions between the important variables were not statistically significant at a 0.05 significance level.

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

Factorial design에 의한 Acetobacter xylinum KJ1의 Bacterial cellulose 생산조건의 최적화

  • 이지은;정상기;이용운;정선용;김성준
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.131-135
    • /
    • 2002
  • Acetobacter xylinum KJ1 efficiently producing bacterial cellulose(BC) in shaking culture was isolated from a rotten grape. The strain was used to investigate optimum operating conditions for increasing BC production and factorial design model was employed for the optimization. The results of experiments were statistically analyzed by SAS program. Reciprocal effects of each factors(carbon source concentration, shaking speeds(rpm), oxygen pressure, and CSL concentration) and culture condition of BC production were examined by getting regression equation of the dependent variable. Comparisons between experimental results and predicted results about BC concentration were done in total 24 experiments by combination of each factors using SAS program, and the correlation coefficients of BC concentration and BC yield were 0.91 and 0.81, respectively. The agitated cultures were performed in various operation conditions of factors which affected considerably to BC production in jar fermentor. The results showed that BC concentration was 11.67g/ L in 80 hours cultivation under the condition of carbon source concentration shaking speeds(rpm) : oxygen pressure: CSL concentration = 4% : 460rpm : 0.28 : 6%. On the other hand BC yield was 0.42g/g in 80 hours cultivation under the condition of carbon source concentration shaking speeds(rpm) : oxygen pressure: CSL concentration = 4% : 564rpm : 0.21 : 2%. The BC production could be enhanced up to more than 65.3% by factorial design. The result of a verifying experiment under the optimal conditions determined by the factorial design to the BC production showed that the model was appropriate by obtaining BC concentration of 11.02g/L in the optimum condition

  • PDF