• Title/Summary/Keyword: Factorial design

Search Result 996, Processing Time 0.037 seconds

Power Comparison in a Balanced Factorial Design with a Nested Factor

  • Choi, Young-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1059-1071
    • /
    • 2008
  • In a balanced factorial design with a nested factor where crossed factors as well as a nested factor exist simultaneously, powers of the rank transformed FR statistic for testing the main, nested and interaction effects are superior to those of the parametric F statistic. In heavy tailed distributions such as exponential and double exponential distributions, powers of the FR statistic show much higher level than those of the F statistic. Further powers of the F and FR statistic for testing the main effect show the highest level in an absolute size as compared with powers of the F and FR statistic for testing the nested and interaction effects. However powers of the FR statistic for testing the nested and interaction effects rather than the main effect are greater in a relative size than powers of F statistic for the all population distributions.

  • PDF

Analysis of Effects of Factors Influencing Biofilm Formation in Drinking Water Distribution Pipe Using Factorial Experimental Design (요인실험계획을 이용한 수도관 생물막 형성 영향 인자의 효과 분석)

  • Park, Se-Keun;Choi, Sung-Chan;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.181-192
    • /
    • 2005
  • This study evaluated the effect of factors influencing the initial biofilm formation in drinking water distribution pipe by running experiments using a $2^{4-1}$ fractional factorial experimental design with a replicate. Important variables used for assessing biofilm formation included BDOC(biodegradable dissolved organic carbon), viable heterotrophic bacteria present in drinking water, water temperature, and shear stress at two levels each. Based on the statistical analysis of biofilm levels measured as attached HPC(heterotrophic plate count) and community-level assay, the main factors that have significant effects on biofilm formation were found to be viable heterotrophic bacteria and BDOC. Water temperature only exhibited significant effect on the levels of attached HPC, while shear stress was not a significant factor under given conditions. Moreover, the statistical analysis revealed that interactions between the important variables were not statistically significant at a 0.05 significance level.

Minimum Aberration $3^{n-k}$ Designs

  • Park, Dong-Kwon
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.277-288
    • /
    • 1996
  • The minimum aberration criterion is commonly used for selecting good fractional factorial designs. In this paper we give same necessary conditions for $3^{n-k}$ fractional factorial designs. We obtain minimum aberration $3^{n-k}$ designs for k = 2 and any n. For k > 2, minimum aberration designs have not found yet. As an alternative, we select a design with minimum aberration among minimum-variance designs.

  • PDF

EMS Rules for Balanced Factorial Designs under No Restriction on Interaction

  • Choi Byoung-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.47-59
    • /
    • 2005
  • Expected mean square(EMS) is an important part of conducting the analysis of variance in the experimental design problem, especially in mixed or random models. We present a set of EMS rules for balanced factorial designs under no restriction on interaction. Also we point out how to use the variance component of SPSS or SAS procedure to obtain EMS.

3n-p Fractional Factorial Design Excluded Some Debarred Combinations

  • Park, Byoung -Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.695-706
    • /
    • 1999
  • When fractional factorial experiments contain some infeasible treatment combinations called debarred combinations we should construct experimental designs so that those debarred combinations are to be excluded by selecting defining contrasts appropriately. By applying Franklin(1995)'s procedure for selecting defining contrasts to Cheng and Li(1993)'s method this paper presents a method of selecting defining contrasts to construct orthogonal 3-level fractional factorial experiments which exclude some debarred combinations.

  • PDF

Wear Property of $Al_2O_3-Particle-Reinforced$ Aluminium Composite

  • Sahin, Y.;Motorcu, A.Riza
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.201-202
    • /
    • 2002
  • The abrasive wear behaviour of $Al_2O_3$ particle-reinforced aluminium composite was investigated. The wear rate of the composite and the matrix alloy has been expressed in terms of the applied load, sliding distance and particle size using linear factorial design approach.

  • PDF

Optimization of V-groove Arc Welding Process Using Genetic Algorithm (유전 알고리즘을 이용한 V그루브 아크 용접 공정변수 최적화)

  • 안홍락;이세헌;안승호;강문진
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.172-175
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. According to the conventional full factorial design, in order to find the optimal welding conditions, 16,384 experiments must be performed. The genetic algorithm however, found the near optimal welding conditions from less than 60 experiments.

  • PDF

RESIDUALS IN MINIMAL RESOLUTION IV DESIGNS

  • Liau, Pen-Hwang
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.3
    • /
    • pp.235-244
    • /
    • 2003
  • In unreplicated factorial or fractional factorial experiments, the presence of one or more outliers can seriously affect the analysis of variance. Using the normal plot of t residuals to identify outliers in factorial or fractional factorial is an easy method to find these dubious points. In some cases, the t residuals form the identical pairs. One can not tell from the plot which is doubtful. This phenomenon occurs for all minimal designs of resolution IV, which fits the model containing all main effects and some two-factor interactions, whether it is orthogonal or not. In these kinds of models, when we drop one point or two points (not foldover pair) from the fraction, the phenomenon of identical pairs of t residuals may still occur. In this paper, the theoretical background of the phenomenon and its sequences will be investigated in detail.

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Identifying Factors Affecting Surface Roughness with Electropolishing Condition Using Full Factorial Design for UNS S31603 (UNS S31603에 대하여 완전요인설계를 이용한 전해연마조건에 따른 표면 거칠기의 유효인자 산출)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.314-324
    • /
    • 2022
  • The objective of this investigation was to indentify major factors affecting surface roughness among various parameters of electropolishing process using the design of an experiment method (full factorial design) for UNS S31603. Factors selected included electrolyte composition ratio, applied current density, and electrolytic polishing time. They were compared through analysis of variance (ANOVA). Results of ANOVA revealed that all parameters could affect surface roughness, with the influence of electrolyte composition ratio being the highest. As a result of surface analysis after electropolishing, the specimen with the deepest surface damage was about 35 times greater than the condition with the smallest surface damage. The largest value of surface roughness after electropolishing was higher than that of mechanical polishing due to excessive processing. On the other hand, the smallest value of surface roughness after electropolishing was 0.159 ㎛, which was improved by more than 80% compared to the previous mechanical polishing. Taken all results together, it is the most appropriate to perform electrolytic polishing with a sulfuric acid and phosphoric acid ratio of 3:7, an applied current density of 300 mA/cm2, and anelectrolytic polishing time of 5 minutes.