• Title/Summary/Keyword: Factor-Based Error Localization

Search Result 10, Processing Time 0.026 seconds

The Factor Localization for Air-to-Ground Weapon Delivery Error Using Fault Localization (결함위치추정 기법을 이용한 공대지 항공무장의 오류 요인 분석)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Gi-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.551-560
    • /
    • 2010
  • In this paper, we suggest a localization method of factors affecting the accuracy of Air-to-Ground weapon delivery. The proposed method, called FBEL(Factor-Based Error Localization), is based on the fault localization technique widely utilized in the realm of software engineering field. FBEL localizes the major factors affecting the performance of weapon delivery. To analyze the effectiveness and the applicability of FBEL, we applied FBEL to real firing data and got the major factors caused the errors. We expect that the method could contribute to improve the quality of weapon delivery system. We also expect that it may aid improvement of pilot capability greatly, if it is applied to pilot firing training.

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

The Fault Analysis Model for Air-to-Ground Weapon Delivery using Testing-Based Software Fault Localization (소프트웨어 오류 추정 기법을 활용한 공대지 사격 오류 요인 분석 모델)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Ki-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.59-67
    • /
    • 2011
  • This paper proposes a model to analyze the fault factors of air-to-ground weapon delivery utilizing software fault localization methods. In the previous study, to figure out the factors to affect the accuracy of air-to-ground weapon delivery, the FBEL (Factor-based Error Localization) method had been proposed and the fault factors were analyzed based on the method. But in the study, the correlation between weapon delivery accuracy and the fault factors could not be revealed because the firing accuracy among several factors was fixed. In this paper we propose a more precise fault analysis model driven through a study of the correlation among the fault factors of weapon delivery, and a method to estimate the possibility of faults with the limited number of test cases utilizing the model. The effectiveness of proposed method is verified through the simulation utilizing real delivery data. and weapons delivery testing in the evaluation of which element affecting the accuracy of analysis that was available to be used successfully.

The performance improvement of new correlator architecture in vehicles navigation system (차량요 항법시스템 기반의 새로운 correlator 구조에 따른 성능 향상에 관한 연구)

  • Park, Chi-Ho;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.44-53
    • /
    • 2007
  • In this paper, we focus on the developments of complex location awareness algorithms for real-time location based service and precise/stable localization in the outdoor. In the case of using galileo satellite system along with GPS, several error factor such as the ionosphere can be reduced for an increment of used frequency and visible satellites. Therefore, localization estimation error is no longer having problems with location awareness. But, chips synchronization error induces the error of acquisition and tracking, and the performance of receiver can be decreased. In order to solve this problem, this paper proposes a correlator for performance improvement of receiver in the precise localization.

Visible Light Communication Method for Personalized and Localized Building Energy Management

  • Jeong, Jin-Doo;Lim, Sang-Kyu;Han, Jinsoo;Park, Wan-Ki;Lee, Il-Woo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.735-745
    • /
    • 2016
  • The Paris agreement at the 21st Conference of the Parties (COP21) emphasizes the reduction of greenhouse gas emissions and increase in energy consumption in all areas. Thus, an important aspect is energy saving in buildings where the lighting is a major component of the electrical energy consumption. This paper proposes a building energy management system employing visible light communication (VLC) based on LED lighting. The proposed management system has key characteristics including personalization and localization by utilizing such VLC advantages as secure communication through light and location-information transmission. Considering the efficient implementation of an energy-consumption adjustment using LED luminaires, this paper adopts variable pulse position modulation (VPPM) as a VLC modulation scheme with simple controllability of the dimming level that is capable of providing a full dimming range. This paper analyzes the VPPM performances according to variable dimming for several schemes, and proposes a VPPM demodulation architecture based on dimming-factor acquisition, which can obtain an improved performance compared to a 2PPM-based scheme. In addition, the effect of a dimming-factor acquisition error is analyzed, and a frame format for minimizing this error effect is proposed.

Deep Learning-Based Sound Localization Using Stereo Signals Based on Synchronized ILD

  • Hwang, Hyeon Tae;Yun, Deokgyu;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.106-110
    • /
    • 2019
  • The interaural level difference (ILD) used for the sound localization using stereo signals is to find the difference in energy that the sound source reaches both ears. The conventional ILD does not consider the time difference of the stereo signals, which is a factor of lowering the accuracy. In this paper, we propose a synchronized ILD that obtains the ILD after synchronizing these time differences. This method uses the cross-correlation function (CCF) to calculate the time difference to reach both ears and use it to obtain synchronized ILD. In order to prove the performance of the proposed method, we conducted two sound localization experiments. In each experiment, the synchronized ILD and CCF or only the synchronized ILD were given as inputs of the deep neural networks (DNN), respectively. In this paper, we evaluate the performance of sound localization with mean error and accuracy of sound localization. Experimental results show that the proposed method has better performance than the conventional methods.

Mapping algorithm for Error Compensation of Indoor Localization System (실내 측위 시스템의 오차 보정을 위한 매핑 알고리즘)

  • Kim, Tae-Kyum;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.109-117
    • /
    • 2010
  • With the advent of new technologies such as HSDPA, WiBro(Wireless Broadband) and personal devices, we can access various contents and services anytime and anywhere. A location based service(LBS) is essential for providing personalized services with individual location information in ubiquitous computing environment. In this paper, we propose mapping algorithm for error compensation of indoor localization system. Also we explain filter and indoor localization system. we have developed mapping algorithms composed of a map recognition method and a position compensation method. The map recognition method achieves physical space recognition and map element relation extraction. We improved the accuracy of position searching. In addition, we reduced position errors using a dynamic scale factor.

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.

A Novel Weighting Factor Method in NLOS Environment

  • Guan, Xufeng;Hur, SooJun;Choi, JeongHee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.108-116
    • /
    • 2011
  • Non-line-of-sight (NLOS) error is the most common and also a major source of errors in wireless location system. A novel weighting factor (NWF) method is presented in this paper, based on the RSS(Received Signal Strength) measurements, path loss model and Circular Disk of Scatterers Model (CDSM). The proposed positioning method effectively weighted the TOA distance measurements for each Base Station (BS). Simulation results show that the proposed method efficiently weighted the distance measurements and achieve higher localization accuracy than that of Linear Line of Position (LLOP) and Believable Factor Algorithm (BFA).

A hybrid model of regional path loss of wireless signals through the wall

  • Xi, Guangyong;Lin, Shizhen;Zou, Dongyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3194-3210
    • /
    • 2022
  • Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.