• Title/Summary/Keyword: Facility Safety

Search Result 1,941, Processing Time 0.027 seconds

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

Development of Evaluation Factors for Breakwater Rehabilitation (방파제 성능개선을 위한 평가항목 개발)

  • Park, Su-Yeul;Yun, Won-Gun;Kang, Go-Une;Kim, Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.67-74
    • /
    • 2021
  • Domestically, technical condition evaluation for breakwaters has been conducted through safety checks and safety diagnosis. If necessary, maintenance for the facility is conducted. However, in recent years, the need for infrastructure management has been increasing from a life-cycle-cost perspective. For these reasons, the "Sustainable Infrastructure Management Basic Act" was enacted. Previously, only the technical part of the breakwaters was evaluated. However, based on the act, comprehensive management of breakwaters will be possible through performance improvement by adding economic and political evaluations. In this study, evaluation factors and evaluation methods were developed for a breakwater rehabilitation project. The purpose of this study is to present a development direction, items, and methods for the evaluation of breakwater performance improvement to be applied in future practice. This study reviews the concept of maintenance and performance improvement, the literature related to performance improvement, and the project type for the common standard of performance improvement. Evaluation items and evaluation methods for breakwater rehabilitation are suggested to be reviewed by experts. The methodology suggested in this study could be used for preventive maintenance and to reduce accidents.

Decision Making of Seismic Performance Management for the Aged Road Facilities Based on Road-Network and Fragility Curve (취약도곡선을 이용한 도로망기반 노후도로시설물 내진성능관리 의사결정)

  • Kim, Dong-Joo;Choi, Ji-Hae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.94-101
    • /
    • 2021
  • According to the Facility Management System (FMS) operated by the Korea Authority of Land & Infrastructure Safety, it is expected that the number of aging facilities that have been in use for more than 30 years will increase rapidly to 13.9% in 2019 and 34.5% in 2929, and end up with a social problem. In addition, with the revision of "Common Application of Seismic Design Criteria" by the Ministry of Public Administration and Security in 2017, it is mandatory to re-evaluate all existing road facilities and if necessary seismic reinforcement should be done to minimize the magnitude of earthquake damage and perform normal road functions. The seismic performance management-decision support technology currently used in seismic performance management practice in Korea only determines the earthquake-resistance reinforcement priority based on the qualitative index value for the seismic performance of individual facilities. However with this practice, normal traffic functions cannot be guaranteed. A new seismic performance management decision support technology that can provide various judgment data required for decision making is needed to overcome these shortcomings and better perform seismic performance management from a road network perspective.

Analysis of Correlation between Freeze-Thaw Damage on Concrete and Chloride Penetration Acceleration Effect Using Surface Rebound Value (표면반발경도 활용 콘크리트 동해손상과 염분 침투 가속효과의 상관관계 분석)

  • Park, Ji-Sun;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.148-156
    • /
    • 2022
  • Although most domestic concrete structures are simultaneously exposed to freeze-thaw and chloride environments, concrete durability in the field is evaluated by each single action, and the evaluation of chloride-caused damage of concrete requires additional indoor experimental analysis of chloride contents by coring samples from structures in the field. However, in Korea, policies to strengthen facility maintenance, such as 「Special Act on the Safety Control and Maintenance of Establishments」 and 「Framework Act on Sustainable Infrastructure Management」, have been established and implemented since 2018 and facilities subject to safety inspection management by the government and local governments increases, the effective simplification technology for the inspection and diagnosis of concrete structure is needed. Therefore, this study attempted to evaluate the possibility of determining the acceleration chloride penetration of freeze-thaw damaged concrete by using the surface rebound value. For this purpose, concrete specimens already having freeze-thaw damage by exposure to the freeze-thaw acceleration environment were immersed in chloride water. After that, the acceleration relationship of chloride penetration according to freeze-thaw damage was analyzed using the amount of chloride contents in concrete.

Study on the Satisfaction on Onboard Training in Shipping Companies during the COVID-19 Situation - Focusing on the Cadets of Mokpo Maritime University - (코로나19 상황에서의 위탁승선실습 교육만족도 분석 - 목포해양대학교 위탁승선실습생을 중심으로 -)

  • Son, Yoo-Mi;Ryu, Younghyun;Kim, Hwayoung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1023-1035
    • /
    • 2022
  • In the current situation where clearly the ship officer is avoiding boarding, the purpose of this study is to investigate the satisfaction of onboard training in shipping companies during the COVID-19 situation and to suggest plans to improve onboard training. Furthermore, by improving satisfaction, students of maritime university can improve their career awareness as a ship officer in the future. The survey was conducted with the cadets of Mokpo Maritime University after completion of onboard training in shipping companies. The questionnaire contains seven factors: education administration, education contents, officer, facility, education ef ect, education satisfaction and career awareness. The survey analysis results indicated that the satisfaction with education administration and education effect was relatively low, and the satisfaction differed by gender and vessel type. In addition, hypothesis verification revealed that the education contents did not have a positive effect on education satisfaction and career awareness. Furthermore, a great correlation existed between education satisfaction and career awareness. We suggested that education and promotion must be improved before onboard training. In addition, the officer must be educated on the method to teach cadets and establish a training plan such that the officer can systematically guide the cadets with an educator mindset.

Analysis of Evacuation Time According to Variation of Evacuation Stairs' Width in Large-Scale Goshiwons (대규모 고시원의 피난계단 폭의 변화에 따른 피난소요시간 분석)

  • Oh, Su-cheol;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • This research compares and analyzes evacuation time depending on the change in stair width in case of fire at Goshiwons. For this, a simulation has been conducted based on possible evacuation time according to the calculation method for the number of people admittable to a specific target for fire fighting equipped with accommodation. Currently, Gosiwon, which is classified as an accommodation facility (a total floor area of 500 m2 or more), uses blind spots prescribed by the Fire Services Act, Building Act, and Parking Act to build a high-rise building on a small area of land, and most Gosiwon is transformed into a modified accommodation. This is in line with the owner's operating profit, so it is expected to show a continuous increase. Securing the golden time of Gosiwon evacuation time is the last bastion of Gosiwon residents who belong to the economically disadvantaged in our society, and we hope this study will serve as a starting point for discussions on revising related laws and regulations to establish a social safety net As a result of the evacuation simulation analysis, the evacuation time was the least when the width of the group and the evacuation stairs were expanded to 200cm, and the evacuation time of the existing building was reduced by up to 166.3 seconds by comparing 648.4 seconds and scenario 6. This analysis can be meaningful, in that the width of the evacuation stairs revision of related laws and regulations for the safety of multiplex available premises.

Review of the Priority Index for Selection between Repair and Reinforcement Methods of Dam Facilities (댐 시설물 보수·보강공법 선정을 위한 우선순위지수에 대한 고찰 )

  • Dong Hyun Kim;Hyung Jun Park;Hee Jung Youn;Seung Oh Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • After the collapse of the Seongsu Bridge in the 1990s in Korea, attention was focused on the maintenance of facilities. The government has established various policies since the enactment of the Act in 1995 until recently. In general, safety inspections are performed to evaluate the safety grade of facilities, and facilities are maintained and managed by performing repairs and reinforcements for defects. However, since the budget is limited, it is impossible to carry out repair and reinforcement projects for all defects. It is necessary to prioritize repair and reinforcement measures. Then, the priority index (PI) is presented considering the importance of members, the seriousness of defects, and economic feasibility. In this index, the degree of influence can be adjusted within the range of 50 to 100% according to the expert's subjective judgment, and the same weight is set for some specific members. Also, the effect through repair and reinforcement is not taken into account decisively, and most of them have a limit in which priority is determined by economic feasibility. Therefore, in this study, through several case studies, problems with the priority index were reviewed and an equation was presented to improve them.

Estimation of Accident Effectiveness Based Upon the Location of Traffic Signal Using C-G Method (C-G Method를 활용한 신호등 위치에 따른 교통사고 효과 분석)

  • Kim, Jeong Hyun;Kim, Gyu Ho;Kim, Jang Wook;Lee, Soo Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.775-789
    • /
    • 2008
  • The Office for Government Policy Coordination announced in 2006, september that a scheme of pre-signal would show remarkable outcome to reduce traffic accidents. Therefore, the Ministry recommended applying preferentially the pre-signal scheme to enhancement projects for high accident frequency areas. In case that the suggested pre-signal was unilaterally introduced to the enhancement projects at intersections, it might rather cause a big trial and error in terms of traffic safety. Hence, on the basis of quantitative analysis, this study was to indicate a pre-signal's effectiveness to reduce the traffic accidents, to illustrate a trend of the accident type due to the pre-signal, and to introduce intersection type that could be appropriate for the pre-signal. The methodology adopted Comparison-Group Method which was developed by Hauer. Through this methodology, overall effectiveness to reduce the accidents is considered positive but individual effectiveness by intersection and by accident case was different. All cases of the accidents at small scale intersection demonstrated positive results to reduce its accidents, while in case of frontal collision and side-right angle collision out of the accident types, the installation of pre-signal rather caused a negative result increasing the accident in terms of the traffic safety. I hope that this study would be a useful reference for future development of the estimation of accident effectiveness. Thus, when the pre-signal is being installed in the big intersection, it is recommended operating the installation concerning carefully improvements about muliple aspects as traffic operation, traffic facility, human factor etc.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.