• Title/Summary/Keyword: Facial segmentation

Search Result 47, Processing Time 0.022 seconds

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

A Facial Region Detection Using the Skin-Color Segmentation and Sobel Mask (피부색 분할과 소벨 마스크를 이용한 얼굴 영역 검출)

  • 유창연;권동진;장언동;김영길;곽내정;안재형
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.553-558
    • /
    • 2002
  • 본 논문에서는 컬러 영상에서 피부색 분할과 소벨 마스크를 이용한 얼굴 영역 검출 알고리즘을 제안한다. 제안된 알고리즘은 YCbCr색공간에서 Cb와 Cr성분을 이용하여 피부색 분할을 한 후에 형태학적 필터링과 레이블링을 통해 얼굴 후보 영역을 분리한다. 분리된 각 후보 영역에 대해 휘도 성분 Y에서 소벨 마스크의 수직 연산자를 적용한 후에 수평 투영을 통해 나타난 최대값을 눈의 위치로 검출해낸다. 비슷하게 얼굴의 지형적인 특징과 소벨 마스크의 수평 연산자를 적용하여 계산된 수평 투영의 최대값에 따라 턱 부분을 검출한다. 컴퓨터 시뮬레이션 결과는 제안된 방법이 기존의 방법보다 얼굴 영역을 정확하게 분리할 수 있음을 보인다.

  • PDF

A Facial Image Segmentation for Video Coding and its Recognition Based on DWT

  • Lim, Chun-Hwan;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.3B
    • /
    • pp.338-346
    • /
    • 2001
  • 이 논문에서는 잡음에 대해 유연성이 있는 신경망과 차영상법-DCT를 이용한 얼굴인식 알고리즘을 제안한다. 동일환경(조도의 세기, 얼굴에서 카메라까지의 거리)에서 연속적으로 두 개의 영상을 캡쳐했다. 이 때 한 영상은 얼굴을 포함하지 않고 다른 영상은 얼굴을 포함하게 된다. 차영상 방법을 이용하여 두 개의 이미지로부터 얼굴영상과 배경영상을 분리하고 그 다움에 분리된 얼굴영역에서 사각영역을 추출하여 이 영역을 얼굴의 특징영역으로 이용하였다. 이 사각 영역은 눈, 코, 입, 눈썹 등이 포함된다. 다음으로 이 영역에 대해 DWT 연산을 수행한후 특징 백터를 추출하였고, 추출된 특징벡터는 정규화 되어 신경망의 입력벡터로 사용되었다. 시뮬레이션 결과 학습된 얼굴영상에 대해서는 100% 인식률을 보였고 학습되지 않는 얼굴 영상에 대해서는 92.25%의 인식률을 보였다.

  • PDF

Real-time Tracking and Identification for Multi-Camera Surveillance System

  • Hong, Yo-Hoon;Song, Seung June;Rho, Jungkyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • This paper presents a solution for personal profiling system based on user-oriented tracking. Here, we introduce a new way to identify and track humans by using two types of cameras: dome and face camera. Dome camera has a wide view angle so that it is suitable for tracking human movement in large area. However, it is difficult to identify a person only by using dome camera because it only sees the target from above. Thus, face camera is employed to obtain facial information for identifying a person. In addition, we also propose a new mechanism to locate human on targeted location by using grid-cell system. These result in a system which has the capability of maintaining human identity and tracking human activity (movement) effectively.

Extraction of Facial Feature Component using Section Segmentation of Block-units (블록단위 영역분할을 이용한 얼굴 특징 요소 추출)

  • 김승업;이우범;김욱현
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.97-100
    • /
    • 2000
  • 본 논문에서는 얼굴의 특징 추출 알고리즘을 제안한다. 입력 영상을 이진 영상으로 처리한 후, 얼굴 요소 후보 블록의 면적, 둘레, 원형도, 종횡비를 이용하여 불변하는 눈, 코, 입의 특징 요소를 추출한다. 사람의 얼굴에 대한 특징 요소를 추출하기 위하여 우선 이진 영상을 생성한다. 하나 하나의 고립된 영역으로 분리하기 위하여 화소 레이블링을 한 후 만들어진 얼굴 요소 후보 블록 단위로 면적을 구하고, 윤곽선 추적 방법에 의하여 둘레를 구한 다음 면적, 둘레, 원형도 및 종횡비의 유사도를 구한다 블록의 종합 유사도, 대칭적 거리, 위치의 유사도를 활용하여 눈, 코, 입을 추출한다. 추출된 각 특징 요소간의 거리와 각도를 이용하여 12개의 특징 인수를 구하는 제안 알고리즘을 수행함으로써 얼굴의 특징 인수들을 추출한다. 각 특징점 사이의 거리와 각 거리간의 기울기를 이용하여 100명으로부터 획득한 297개의 원 영상을 대상으로 12개의 특징 파라미터를 추출한 결과 92.93%의 추출 성공률을 보였다. 이러한 결과는 외부 환경의 영향을 덜 받는 눈, 코, 입의 위치 관계의 블록을 근거로 특징 요소를 추출할 수 있도록 제안 알고리즘을 구성하였던 것으로 판단된다.

  • PDF

Analysis of Facial Image Synthesis Models using Segmentation Maps including Skin Microelements (피부 미세 요소가 포함된 분할 맵을 이용한 얼굴 영상 합성 모델 분석)

  • Kim, Yujin;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1256-1257
    • /
    • 2022
  • 분할 맵 기반 얼굴 합성 분야의 기존 연구들은 피부 영역을 하나의 라벨로 취급한다. 이는 피부 내 미세한 요소를 표현하지 못하며 고해상도 영상 합성 성능 부족이라는 결과를 초래한다. 본 논문에서는 이러한 문제점을 극복하고자 분할 맵에 주름, 모공, 홍조와 같은 피부 요소를 추가하여 이로부터 얼굴 영상을 합성하는 기법을 제안한다. 기존 분할 맵 기반 영상 합성 연구에 제안하는 기법을 적용하여 정량적 및 정성적 비교를 통해 성능이 개선됨을 보인다.

  • PDF

Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier (피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this paper we propose a face detection system which consists of a method of face candidate extraction using skin color and a method of face verification using the feature of facial structure. Firstly, the proposed extraction method of face candidate uses the image segmentation and merging algorithm in the regions of skin color and the neighboring regions of skin color. These two algorithms make it possible to select the face candidates from the variety of faces in the image with complicated backgrounds. Secondly, by using the partial face classifier, the proposed face validation method verifies the feature of face structure and then classifies face and non-face. This classifier uses face images only in the learning process and does not consider non-face images in order to use less number of training images. In the experimental, the proposed method of face candidate extraction can find more 9.55% faces on average as face candidates than other methods. Also in the experiment of face and non-face classification, the proposed face validation method obtains the face classification rate on the average 4.97% higher than other face/non-face classifiers when the non-face classification rate is about 99%.

A STUDY ABOUT THE VARIATION OF STYLOID PROCESSES IN PANORAMIC RADIOGRAPHS (파노라마 방사선사진상에서 경상돌기의 변이에 관한 연구)

  • Oh Sook Hee;Kim Chong Youl
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.193-201
    • /
    • 1988
  • The purpose of this study was to investigate the variation in the length and shape of styloid processes and the relationships between the elongated styloid processes and the styloid process syndrome, using panoramic radiogrpahs and questionaires. The subjects were 342 patients consisted of 170 males and 172 females aged from 11 to 78 years, not showing facial asymmetry, who visited infirmary of dental college of Yonsei University. Also, the accuracy was determined for measuring the length of styloid processes from panoramic radiographs, using dried skulls. The results were as follows: 1. The length of styloid processes was magnified approximately 1.1 times, but there was no statistically significant differencies in the magnification rate of length between right and left side. 2. The mean radiographic length of styloid processes was 29.72±7.92㎜ in males, 27.93±6.69㎜ in females, and 28.82±7.37㎜ in total. And elongated styloid process (>30㎜) was seen in 31.3% of total subjects. 3. The growth in the length of styloid processes was completed in the third decade. 4. The most common shape of styloid processes was straight followed by segmented and bent form. The incidence of segmentation was reduced with increasing age. 5. The 74% of subjects with elongated styloid process (>30㎜) showed symptoms of the styloid process syndrome. The most frequent symptom was headache followed by discomfort in the neck when turning the head from left to right, tinnitus or earache, vague facial pain, discomfort or pain when swallowing, feeling that an object is caught in throat.

  • PDF

Anonymity of Medical Brain Images (의료 두뇌영상의 익명성)

  • Lee, Hyo-Jong;Du, Ruoyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • The current defacing method for keeping an anonymity of brain images damages the integrity of a precise brain analysis due to over removal, although it maintains the patients' privacy. A novel method has been developed to create an anonymous face model while keeping the voxel values of an image exactly the same as that of the original one. The method contains two steps: construction of a mockup brain template from ten normalized brain images and a substitution of the mockup brain to the brain image. A level set segmentation algorithm is applied to segment a scalp-skull apart from the whole brain volume. The segmented mockup brain is coregistered and normalized to the subject brain image to create an anonymous face model. The validity of this modification is tested through comparing the intensity of voxels inside a brain area from the mockup brain with the original brain image. The result shows that the intensity of voxels inside from the mockup brain is same as ones from an original brain image, while its anonymity is guaranteed.

Block Based Face Detection Scheme Using Face Color and Motion Information

  • Kim, Soo-Hyun;Lim, Sung-Hyun;Cha, Hyung-Tai;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.461-468
    • /
    • 2003
  • In a sequence of images obtained by surveillance cameras, facial regions appear very small and their colors change abruptly by lighting condition. This paper proposes a new face detection scheme, robust on complex background, small size, and lighting conditions. The proposed method is consisted of three processes. In the first step, the candidates for the face regions are selected using face color distribution and motion information. In the second stage, the non-face regions are removed using face color ratio, boundary ratio, and average of column-wise intensity variation in the candidates. The face regions containing eyes and mouth are segmented and classified, and then they are scored using their topological relations in the last step. To speed up and improve a performance the above process, a block based image segmentation technique is used. The experiments have shown that the proposed algorithm detects faced regions with more than 91% of accuracy and less than 4.3% of false alarm rate.