얼굴 인식 방법 중에 한 얼굴 영상을 분할하여 분할한 각 부분마다 통계적 방법을 적용해 특징추출을 수행한 다음 각 부분마다 분류를 수행하고 이러한 분류결과를 모아서 voting등의 방법으로 얼굴 인식을 수행 하는 방법을 국부 외형 기반 방법(local appearance-based method) 이라고 한다. 기존에 제안된 국부 외형 기반 얼굴 인식은 얼굴 영상을 일정한 크기로 단순분할하고, 그 부분들을 모두 인식에 사용한다. 본고에서는 인식에 상대적으로 중요한 부분만을 사용하여 얼굴 인식을 수행하는 새로운 국부 외형 기반 얼굴 인식 방법을 제안한다. 본고에서는 단순 분할 방법 대신에 눈, 코, 입 등 인물 간의 차이가 잘 나타나는 얼굴 부분들을 support vector machine (SVM) 을 이용하여 검출한 후, 검출한 각 부분에 주성분 분석 (PCA) 을 적용하고 이를 통합하여 얼굴 인식을 수행하였다. 실험을 통해 제안한 방법과 기존 방법의 성능을 비교한 결과, 제안한 방법이 기존의 국부 외형 기반 방법의 장점을 지니는 동시에 성능을 개선시킴을 확인하였다.
얼굴인식기술이 인증 및 보안을 위한 도구로 활용되고 있지만 입력영상의 상태, 즉 조명환경에 따라 적용할 수 있는 범위가 제약적일 수밖에 없다. 본 논문에서는 이러한 제약을 최소화하기 위해 측면과 후면조명 등의 불규칙한 조명환경에서 획득한 입력영상에서 얼굴의 특징을 구분하여 얼굴영상임을 확인하는 방법을 제안한다. 제안된 방법은 에지차영상을 얼굴특징이 두드러지도록 전처리한 후, X와 Y축의 프로파일을 이용하여 얼굴영역을 예측하고 영역 내의 밝기분포를 이용하여 눈, 코, 입 등의 얼굴특징이 놓일 수 있는 수평영역을 분리한다. 수평영역들은 눈, 코, 입을 포함할 수 있는 영역의 그룹으로 나누어지고 각 그룹에서 코와 입, 그리고 눈의 순서로 특징들을 검출한다. 얼굴여부는 검출된 특징들의 구조적인 관계를 검증하여 확인한다. 제안된 알고리즘은 배경색상이나 조명의 방향과 색상 등으로 인해 얼굴의 형태와 특징이 결여된 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다.
본 연구에서는 3차원 영상처리와 노팅험 스케일을 이용하여 안면마비 평가 시스템을 개발하였다. 시스템은 측정부, 영상처리부, 연산부, 그리고 안면마비 평가 및 출력부로 구성되어 있다. 두 개의 웹캠을 사용하여 안면부의 8곳에 부착된 마커의 3차원 위치를 계산하였으며, 이를 이용하여 노팅험 스케일을 계산하고 화면에 보여준다. 피험자의 자세변화와 측정방식이 노팅험 스케일에 미치는 영향을 조사하였다. 측정방식은 2차원과 3차원을 비교하였으며, 피험자자세는 정면응시와 $11^{\circ}$ 측면응시를 비교하였다. 측면응시한 피험자를 2차원 방식으로 측정한 경우의 오차가 가장 컸다. 3차원 측정방식이 피험자의 자세변화에 따른 오차에 가장 덜 민감하였다.
In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권5호
/
pp.1690-1710
/
2014
In this paper, we propose the rapid implementation of a 3-dimensional (3D) facial reconstruction from a single frontal face image and introduce a design for its application on a mobile device. The proposed system can effectively reconstruct human faces in 3D using an approach robust to lighting conditions, and a fast method based on a Canonical Correlation Analysis (CCA) algorithm to estimate the depth. The reconstruction system is built by first creating 3D facial mapping from a personal identity vector of a face image. This mapping is then applied to real-world images captured with a built-in camera on a mobile device to form the corresponding 3D depth information. Finally, the facial texture from the face image is extracted and added to the reconstruction results. Experiments with an Android phone show that the implementation of this system as an Android application performs well. The advantage of the proposed method is an easy 3D reconstruction of almost all facial images captured in the real world with a fast computation. This has been clearly demonstrated in the Android application, which requires only a short time to reconstruct the 3D depth map.
Transactions on Control, Automation and Systems Engineering
/
제3권4호
/
pp.283-288
/
2001
In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion followed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wave let transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. other facial features are obtained from edge information of the image. The characteristic vectors are extrated from DWT of the segmented face image. These characteristic vectors are normalized between +1 and -1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100% on the learned system, and about 92% on the test images.
최근 딥러닝 기반의 얼굴 합성 연구는 전체적인 스타일이나 헤어, 안경, 화장과 같은 요소를 포함하는 매우 사실적인 얼굴을 생성하는 결과를 보인다. 그러나 피부의 미세 구조와 같은 매우 세부적인 수준의 얼굴은 생성하지 못한다. 본 논문에서는 이러한 한계점을 극복하고자 한 장의 얼굴 라벨 영상으로부터 피부 미세 요소의 종류와 강도 조절을 통해 더욱 사실적인 얼굴 영상을 합성하는 기법을 제안한다. 제안하는 기법은 Image-to-Image Translation 방법인 Pix2PixHD를 이용해 얼굴 영역과 피부 요소인 주름, 모공, 홍조가 표시된 라벨 영상을 변환하여 미세 요소가 추가된 얼굴 영상을 생성한다. 피부 요소 영역을 조절한 라벨 영상을 다양하게 생성함으로써 이에 대응하는 미세한 피부 요소가 반영된 다양한 사실적인 얼굴 영상을 생성할 수 있음을 실험을 통해 보인다.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
제34권6호
/
pp.622-627
/
2008
In orthognathic surgery, precise analysis and diagnosis are essential for successful results. In facial asymmetric patient, traditional 2D image analysis has been used by lateral and P-A Cephalometric view, Skull PA, Panorama, Submentovertex view etc. But clinicians sometimes misdiagnose because they cannot find exact landmark due to superimposition, moreover image can be magnified and distorted by projection technique or patient's skull position, when using these analysis and method. For overcome these defects, analysis by using of 3D CT has been introduced. In this way we can analysis precisely by getting the exact image free of artifact and finding exact landmark with no interruption of superimposition. So we want to review of relationship between various skeletal landmarks of mandible or cranial base and facial asymmetry by predictable analysis using 3D CT. We select the cases of the patients who visited our department for correction of facial asymmetry during 2003-2007 and who were taken image of 3D CT for diagnosis. 3D CT images were reconstructed to 3D image by using V-Work program (Cybermed Inc., Seoul, Korea). And we analysis the relationship between facial asymmetry and various affecting factor of skeletal pattern. The mandibular ramus hight difference between right and left was most affecting factor that express facial asymmetry. And in this research, there was no relationship between cranial base and facial asymmetry. The angulation between facial midline and mandibular ramus divergency has significant relationship with facial asymmetry
The purposes of this study were to find out any significants among somatotypes and face types and importance of image making to successful students' life. The respondents were composed of 181 males and 160 females. It consists of total 29 items including the facial features, personality expression methods, characteristics of body shapes, image making, colors and neckline and their responses were measured with Likert 5-point scale. For data analysis, descriptive statistics, cross-tabulation analysis including $Χ^2$-test and frequency analysis were used. As the results, 47% of male students and 28% of female students responded they were satisfied with their own facial types. 32% of male students and all female students were not satisfied with their own body shapes and fashion depends on accessories like hat, sunglasses, boots and necklace rather than dress itself. All male and female students were not satisfied with their body shapes and recognized the importance of image. They answered that they change image if someone advices their image and it suggests that information and intellectual needs of image making are required and approach to efficient methods of image making is needed.
본 논문에서는 얼굴 영역 수술용 네비게이션을 위한 스테레오 비전과 CT 영상을 이용하여 환자-영상 간 정합(Image to patient registration) 알고리즘의 성능을 평가한다. 환자 영상 간 정합은 스테레오 비전 영상의 특징점 추출과 이를 통한 3차원 좌표 계산, 3차원 좌표와 3차원 CT 영상과의 정합 과정을 거친다. 스테레오 비전 영상에서 3가지 얼굴 특징점 추출 방법과 3가지 정합 방법을 사용하여 생성될 수 있는 5가지 조합 중 정합 정확도가 가장 높은 방법을 평가한다. 또한 머리의 회전에 따라 환자 영상 간 정합의 정확도를 비교한다. 실험을 통해 머리의 회전 각도가 약 20도의 범위 내에서 Active Appearance Model과 Pseudo Inverse Matching을 사용한 정합의 정확도가 가장 높았으며, 각도가 20도 이상일 경우 Speeded Up Robust Features와 Iterative Closest Point를 사용하였을 때 정합 정확도가 높았다. 이 결과를 통해 회전각도가 20도 범위 내에서는 Active Appearance Model과 Pseudo Inverse Matching 방법을 사용하고, 20도 이상의 경우 Speeded Up Robust Features와 Iterative Closest Point를 이용하는 것이 정합의 오차를 줄일 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.