• Title/Summary/Keyword: Facial Emotion Expression

Search Result 203, Processing Time 0.033 seconds

Effects of Working Memory Load on Negative Facial Emotion Processing: an ERP study (작업기억 부담이 부적 얼굴정서 처리에 미치는 영향: ERP 연구)

  • Park, Taejin;Kim, Junghee
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.1
    • /
    • pp.39-59
    • /
    • 2018
  • To elucidate the effect of working memory (WM) load on negative facial emotion processing, we examined ERP components (P1 and N170) elicited by fearful and neutral expressions each of which was presented during 0-back (low-WM load) or 2-back (high-WM load) tasks. During N-back tasks, visual objects were presented one by one as targets and each of facial expressions was presented as a passively observed stimulus during intervals between targets. Behavioral results showed more accurate and fast responses at low-WM load condition compared to high-WM load condition. Analysis of mean amplitudes of P1 on the occipital region showed significant WM load effect (high-WM load > low-WM load) but showed nonsignificant facial emotion effect. Analysis of mean amplitudes of N170 on the posterior occipito-temporal region showed significant overall facial emotion effect (fearful > neutral), but, in detail, significant facial emotion effect was observed only at low-WM load condition on the left hemisphere, but was observed at high-WM load condition as well as low-WM load condition on the right hemisphere. To summarize, facial emotion effect observed by N170 amplitudes was modulated by WM load only on the left hemisphere. These results show that early emotional processing of negative facial expression could be eliminated or reduced by high load of WM on the left hemisphere, but could not be eliminated by high load on the right hemisphere, and suggest right hemispheric lateralization of negative facial emotion processing.

A Comparative Analysis on Facial Expression in Advertisements -By Utilising Facial Action Coding System(FACS) (광고 속의 얼굴 표정에 따른 비교 연구 -FACS를 활용하여)

  • An, Kyoung Hee
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.61-71
    • /
    • 2019
  • Due to the limit of the time length of advertisement, facial expressions among the types of nonverbal communication are much more expressive and convincing to appeal to costumers. The purpose of this paper is not only to investigate how facial expressions are portrayed but also to examine how facial expressions convey emotion in TV advertisements. Research subjects are TV advertisements of and which had the wide range of popularity for customer known as one of the most touching commercials. The research method is Facial Action Coding System based on the theoretical perspective of a discrete emotions and designed to measure specific facial muscle movements. This research is to analyse the implications of facial expressions in the both TV ads by using FACS based on Psychology as well as anatomy. From the all the result of this, it is shown that the facial expressions portrayed with the conflict of emotional states and the dramatic emotional relief of the heroin could move more customers' emotions.

Study of expression in virtual character of facial smile by emotion recognition (감성인식에 따른 가상 캐릭터의 미소 표정변화에 관한 연구)

  • Lee, Dong-Yeop
    • Cartoon and Animation Studies
    • /
    • s.33
    • /
    • pp.383-402
    • /
    • 2013
  • In this study, we apply the facial Facial Action Coding System for coding the muscular system anatomical approach facial expressions to be displayed in response to a change in sensitivity. To verify by applying the virtual character the Duchenne smile to the original. I extracted the Duchenne smile by inducing experiment of emotion (man 2, woman 2) and the movie theater department students trained for the experiment. Based on the expression that has been extracted, I collect the data of the facial muscles. Calculates the frequency of expression of the face and other parts of the body muscles around the mouth and lips, to be applied to the virtual character of the data. Orbicularis muscle to contract end of lips due to shrinkage of the Zygomatic Major is a upward movement, cheek goes up, the movement of the muscles, facial expressions appear the outer eyelid under the eye goes up with a look of smile. Muscle movement of large muscle and surrounding Zygomatic Major is observed together (AU9) muscles around the nose and (AU25, AU26, AU27) muscles around the mouth associated with openness. Duchen smile occurred in the form of Orbicularis Oculi and Zygomatic Major moves at the same time. Based on this, by separating the orbicularis muscle that is displayed in the form of laughter and sympathy to emotional feelings and viable large muscle by the will of the person, by applying to the character of the virtual, and expression of human I try to examine expression of the virtual character's ability to distinguish.

Facial Expression Training Digital Therapeutics for Autistic Children (자폐아를 위한 표정 훈련 디지털 치료제)

  • Jiyeon Park;Kyoung Won Lee;Seong Yong Ohm
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.581-586
    • /
    • 2023
  • Recently a drama that features a lawyer with autism spectrum disorder has attracted a lot of attention, raising interest in the difficulties faced by people with autism spectrum disorders. If the Autism spectrum gets detected early and proper education and treatment, the prognosis can be improved, so the development of the treatment is urgently needed. Drugs currently used to treat autism spectrum often have side effects, so Digital Therapeutics that have no side effects and can be supplied in large quantities are drawing attention. In this paper, we introduce 'AEmotion', an application and a Digital Therapeutic that provides emotion and facial expression learning for toddlers with an autism spectrum disorder. This system is developed as an application for smartphones to increase interest in training autistic children and to test easily. Using machine learning, this system consists of three main stages: an 'emotion learning' step to learn emotions with facial expression cards, an 'emotion identification' step to check if the user understood emotions and facial expressions properly, and an 'expression training' step to make appropriate facial expressions. Through this system, it is expected that it will help autistic toddlers who have difficulties with social interactions by having problems recognizing facial expressions and emotions.

Using Ensemble Learning Algorithm and AI Facial Expression Recognition, Healing Service Tailored to User's Emotion (앙상블 학습 알고리즘과 인공지능 표정 인식 기술을 활용한 사용자 감정 맞춤 힐링 서비스)

  • Yang, seong-yeon;Hong, Dahye;Moon, Jaehyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.818-820
    • /
    • 2022
  • The keyword 'healing' is essential to the competitive society and culture of Koreans. In addition, as the time at home increases due to COVID-19, the demand for indoor healing services has increased. Therefore, this thesis analyzes the user's facial expression so that people can receive various 'customized' healing services indoors, and based on this, provides lighting, ASMR, video recommendation service, and facial expression recording service.The user's expression was analyzed by applying the ensemble algorithm to the expression prediction results of various CNN models after extracting only the face through object detection from the image taken by the user.

Discriminative Effects of Social Skills Training on Facial Emotion Recognition among Children with Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder

  • Lee, Ji-Seon;Kang, Na-Ri;Kim, Hui-Jeong;Kwak, Young-Sook
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.29 no.4
    • /
    • pp.150-160
    • /
    • 2018
  • Objectives: This study investigated the effect of social skills training (SST) on facial emotion recognition and discrimination in children with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Methods: Twenty-three children aged 7 to 10 years participated in our SST. They included 15 children diagnosed with ADHD and 8 with ASD. The participants' parents completed the Korean version of the Child Behavior Checklist (K-CBCL), the ADHD Rating Scale, and Conner's Scale at baseline and post-treatment. The participants completed the Korean Wechsler Intelligence Scale for Children-IV (K-WISC-IV) and the Advanced Test of Attention at baseline and the Penn Emotion Recognition and Discrimination Task at baseline and post-treatment. Results: No significant changes in facial emotion recognition and discrimination occurred in either group before and after SST. However, when controlling for the processing speed of K-WISC and the social subscale of K-CBCL, the ADHD group showed more improvement in total (p=0.049), female (p=0.039), sad (p=0.002), mild (p=0.015), female extreme (p=0.005), male mild (p=0.038), and Caucasian (p=0.004) facial expressions than did the ASD group. Conclusion: SST improved facial expression recognition for children with ADHD more effectively than it did for children with ASD, in whom additional training to help emotion recognition and discrimination is needed.

Accurate Visual Working Memory under a Positive Emotional Expression in Face (얼굴표정의 긍정적 정서에 의한 시각작업기억 향상 효과)

  • Han, Ji-Eun;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.605-616
    • /
    • 2011
  • The present study examined memory accuracy for faces with positive, negative and neutral emotional expressions to test whether their emotional content can affect visual working memory (VWM) performance. Participants remembered a set of face pictures in which facial expressions of the faces were randomly assigned from pleasant, unpleasant and neutral emotional categories. Participants' task was to report presence or absence of an emotion change in the faces by comparing the remembered set against another set of test faces displayed after a short delay. The change detection accuracies of the pleasant, unpleasant and neutral face conditions were compared under two memory exposure duration of 500ms vs. 1000ms. Under the duration of 500ms, the accuracy in the pleasant condition was higher than both unpleasant and neutral conditions. However the difference disappeared when the duration was extended to 1000ms. The results indicate that a positive facial expression can improve VWM accuracy relative to the negative or positive expressions especially when there is not enough time for forming durable VWM representations.

  • PDF

Enhanced Independent Component Analysis of Temporal Human Expressions Using Hidden Markov model

  • Lee, J.J.;Uddin, Zia;Kim, T.S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.487-492
    • /
    • 2008
  • Facial expression recognition is an intensive research area for designing Human Computer Interfaces. In this work, we present a new facial expression recognition system utilizing Enhanced Independent Component Analysis (EICA) for feature extraction and discrete Hidden Markov Model (HMM) for recognition. Our proposed approach for the first time deals with sequential images of emotion-specific facial data analyzed with EICA and recognized with HMM. Performance of our proposed system has been compared to the conventional approaches where Principal and Independent Component Analysis are utilized for feature extraction. Our preliminary results show that our proposed algorithm produces improved recognition rates in comparison to previous works.

  • PDF

Analysis of children's Reaction in Facial Expression of Emotion (얼굴표정에서 나타나는 감정표현에 대한 어린이의 반응분석)

  • Yoo, Dong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.70-80
    • /
    • 2013
  • The purpose of this study has placed its meaning in the use as the basic material for the research of the person's facial expressions, by researching and analyzing the visual reactions of recognition of children according to the facial expressions of emotion and by surveying the verbal reactions of boys and girls according to the individual expressions of emotion. The subjects of this study were 108 children at the age of 6 - 8 (55 males, 53 females) who were able to understand the presented research tool, and the response survey conducted twice were used in the method of data collection by individual interviews and self administered questionnaires. The research tool using in the questionnaires were classified into 6 types of joy, sadness, anger, surprise, disgust, and fear which could derive the specific and accurate responses. Regarding children's visual reactions of recognition, both of boys and girls showed the high frequency in the facial expressions of joy, sadness, anger, surprise, and the low frequency in fear, disgust. Regarding verbal reactions, it showed the high frequency in the heuristic responses either to explore or the responds to the impressive parts reminiscent to the facial appearances in all the joy, sadness, anger, surprise, disgust, fear. And it came out that the imaginary responses created new stories reminiscent to the facial expression in surprise, disgust, and fear.

Quantified Lockscreen: Integration of Personalized Facial Expression Detection and Mobile Lockscreen application for Emotion Mining and Quantified Self (Quantified Lockscreen: 감정 마이닝과 자기정량화를 위한 개인화된 표정인식 및 모바일 잠금화면 통합 어플리케이션)

  • Kim, Sung Sil;Park, Junsoo;Woo, Woontack
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1459-1466
    • /
    • 2015
  • Lockscreen is one of the most frequently encountered interfaces by smartphone users. Although users perform unlocking actions every day, there are no benefits in using lockscreens apart from security and authentication purposes. In this paper, we replace the traditional lockscreen with an application that analyzes facial expressions in order to collect facial expression data and provide real-time feedback to users. To evaluate this concept, we have implemented Quantified Lockscreen application, supporting the following contributions of this paper: 1) an unobtrusive interface for collecting facial expression data and evaluating emotional patterns, 2) an improvement in accuracy of facial expression detection through a personalized machine learning process, and 3) an enhancement of the validity of emotion data through bidirectional, multi-channel and multi-input methodology.