• Title/Summary/Keyword: Facial Emotion Expression

Search Result 203, Processing Time 0.028 seconds

Research on Micro-Movement Responses of Facial Muscles by Intimacy, Empathy, Valence (친밀도, 공감도, 긍정도에 따른 얼굴 근육의 미세움직임 반응 차이)

  • Cho, Ji Eun;Park, Sang-In;Won, Myoung Ju;Park, Min Ji;Whang, Min-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.439-448
    • /
    • 2017
  • Facial expression is important factor on social interaction. Facial muscle movement provides emotion information to develop social network. However, facial movement has less determined to recognize social emotion. This study is to analyze facial micro-movements and to recognize the social emotion such as intimacy, empathy, and valence. 76 university students were presented to the stimuli for social emotions and was measure their facial expression using camera. As a results, facial micro-movement. showed significant difference of social emotion. After extracting the movement amount of 3 unconscious muscles and 18 conscious muscles, Dominant Frequency band was confirmed. While muscle around the nose and cheek showed significant difference in the intimacy, one around mouth did in the empathy and one around jaw in the valence. The results proposed new facial movement to express social emotion in virtual avatars and to recognize social emotion.

Emotion Recognition of Facial Expression using the Hybrid Feature Extraction (혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식)

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF

The Accuracy of Recognizing Emotion From Korean Standard Facial Expression (한국인 표준 얼굴 표정 이미지의 감성 인식 정확률)

  • Lee, Woo-Ri;Whang, Min-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.476-483
    • /
    • 2014
  • The purpose of this study was to make a suitable images for korean emotional expressions. KSFI(Korean Standard Facial Image)-AUs was produced from korean standard apperance and FACS(Facial Action coding system)-AUs. For the objectivity of KSFI, the survey was examined about emotion recognition rate and contribution of emotion recognition in facial elements from six-basic emotional expression images(sadness, happiness, disgust, fear, anger and surprise). As a result of the experiment, the images of happiness, surprise, sadness and anger which had shown higher accuracy. Also, emotional recognition rate was mainly decided by the facial element of eyes and a mouth. Through the result of this study, KSFI contents which could be combined AU images was proposed. In this future, KSFI would be helpful contents to improve emotion recognition rate.

Emotional Expression System Based on Dynamic Emotion Space (동적 감성 공간에 기반한 감성 표현 시스템)

  • Sim Kwee-Bo;Byun Kwang-Sub;Park Chang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • It is difficult to define and classify human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. And among them, a remarkable emotion is expressed. This paper proposes a emotional expression algorithm using dynamic emotion space, which give facial expression in similar with vague human emotion. While existing avatar express several predefined emotions from database, our emotion expression system can give unlimited various facial expression by expressing emotion based on dynamically changed emotion space. In order to see whether our system practically give complex and various human expression, we perform real implementation and experiment and verify the efficacy of emotional expression system based on dynamic emotion space.

Weighted Soft Voting Classification for Emotion Recognition from Facial Expressions on Image Sequences (이미지 시퀀스 얼굴표정 기반 감정인식을 위한 가중 소프트 투표 분류 방법)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1175-1186
    • /
    • 2017
  • Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.

The interaction between emotion recognition through facial expression based on cognitive user-centered television (이용자 중심의 얼굴 표정을 통한 감정 인식 TV의 상호관계 연구 -인간의 표정을 통한 감정 인식기반의 TV과 인간의 상호 작용 연구)

  • Lee, Jong-Sik;Shin, Dong-Hee
    • Journal of the HCI Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • In this study we focus on the effect of the interaction between humans and reactive television when emotion recognition through facial expression mechanism is used. Most of today's user interfaces in electronic products are passive and are not properly fitted into users' needs. In terms of the user centered device, we propose that the emotion based reactive television is the most effective in interaction compared to other passive input products. We have developed and researched next generation cognitive TV models in user centered. In this paper we present a result of the experiment that had been taken with Fraunhofer IIS $SHORE^{TM}$ demo software version to measure emotion recognition. This new approach was based on the real time cognitive TV models and through this approach we studied the relationship between humans and cognitive TV. This study follows following steps: 1) Cognitive TV systems can be on automatic ON/OFF mode responding to motions of people 2) Cognitive TV can directly select channels as face changes (ex, Neutral Mode and Happy Mode, Sad Mode, Angry Mode) 3) Cognitive TV can detect emotion recognition from facial expression of people within the fixed time and then if Happy mode is detected the programs of TV would be shifted into funny or interesting shows and if Angry mode is detected it would be changed to moving or touching shows. In addition, we focus on improving the emotion recognition through facial expression. Furthermore, the improvement of cognition TV based on personal characteristics is needed for the different personality of users in human to computer interaction. In this manner, the study on how people feel and how cognitive TV responds accordingly, plus the effects of media as cognitive mechanism will be thoroughly discussed.

A Study on Emotion Recognition Systems based on the Probabilistic Relational Model Between Facial Expressions and Physiological Responses (생리적 내재반응 및 얼굴표정 간 확률 관계 모델 기반의 감정인식 시스템에 관한 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.513-519
    • /
    • 2013
  • The current vision-based approaches for emotion recognition, such as facial expression analysis, have many technical limitations in real circumstances, and are not suitable for applications that use them solely in practical environments. In this paper, we propose an approach for emotion recognition by combining extrinsic representations and intrinsic activities among the natural responses of humans which are given specific imuli for inducing emotional states. The intrinsic activities can be used to compensate the uncertainty of extrinsic representations of emotional states. This combination is done by using PRMs (Probabilistic Relational Models) which are extent version of bayesian networks and are learned by greedy-search algorithms and expectation-maximization algorithms. Previous research of facial expression-related extrinsic emotion features and physiological signal-based intrinsic emotion features are combined into the attributes of the PRMs in the emotion recognition domain. The maximum likelihood estimation with the given dependency structure and estimated parameter set is used to classify the label of the target emotional states.

Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier (상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.653-662
    • /
    • 2006
  • In ubiquitous computing that is to build computing environments to provide proper services according to user's context, human being's emotion recognition based on facial expression is used as essential means of HCI in order to make man-machine interaction more efficient and to do user's context-awareness. This paper addresses a problem of rigidly basic emotion recognition in context-sensitive facial expressions through a new Bayesian classifier. The task for emotion recognition of facial expressions consists of two steps, where the extraction step of facial feature is based on a color-histogram method and the classification step employs a new Bayesian teaming algorithm in performing efficient training and test. New context-sensitive Bayesian learning algorithm of EADF(Extended Assumed-Density Filtering) is proposed to recognize more exact emotions as it utilizes different classifier complexities for different contexts. Experimental results show an expression classification accuracy of over 91% on the test database and achieve the error rate of 10.6% by modeling facial expression as hidden context.