• Title/Summary/Keyword: Face-cavitation

Search Result 7, Processing Time 0.019 seconds

Prediction of the Propeller Face Cavity Inception and Experimental Verification (프로펠러 압력면 캐비테이션의 초기발생 추정 및 실험 검증)

  • Ahn, Byoung-Kwon;Lee, Chang-Sup;Yu, Yong-Wan;Moon, Il-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.467-473
    • /
    • 2007
  • Cavitation phenomena appearing on ship propellers have long been interested and recent theoretical analysises give good results comparing with model tests. In accordance with a continuous rise in heavy powered and high speed ships, hull forms have been changed and loads acting on the propeller surface have also been increased, and they result in various and particular cavitations. In some cases, cavitation appears not only on the back but also on the face of the propeller and it causes additive pressure fluctuations and erosion of the propeller and reduces propulsion efficiency of the ship. In this study, we predict the face cavity inception using unsteady propeller analysis based on the panel method and compare the results with experimental observations.

Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Rao, M. Nageswara
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.185-194
    • /
    • 2010
  • A pumpjet propulsor (PJP) was designed for an underwater body (UWB) with axi-symmetric configuration. Its performance was predicted through CFD study and models were manufactured. The propulsor design was evaluated for its propulsion characteristics through model tests conducted in a Wind Tunnel (WT). In the concluding part of the study, evaluation of the cavitation performance of the pumpjet was undertaken in a cavitation tunnel (CT). In order to assess the cavitation free operation speeds and depths of the body, cavitation tests of the PJP were carried out in behind condition to determine the inception cavitation numbers for rotor, stator and cowl. The model test results obtained were corrected for full scale Reynolds number and subsequently analyzed for cavitation inception speeds at different operating depths. From model tests it was also found that the cavitation inception of the rotor takes place on the tip face side at higher advance ratios and cavitation shifts towards the suction side as the RPS increases whereas the stator and cowl are free from cavitation.

An Experimental Research on Gap Cavitation Erosion of Semi-spade Rudder (혼-타의 간극 캐비테이션 침식 저감을 위한 실험적 연구)

  • Kim, Sung-Pyo;Park, Jae-Jun;Kim, Yong-Soo;Jang, Young-Hun;Choi, Young-Bok;Paik, Bu-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.578-585
    • /
    • 2006
  • Cavitation related erosion damages on semi-spade rudder generally occur at around leading edge of lower-face and behind gap of lower pintle. To get the idea of gap entrance profile for the latter case, a series of tests with large models has been carried out at MOERI. In the tests, the flow pattern around lower pintle have been investigated and visualized by high speed camera. Additionally, cavitation inception tests and pressure measurements have also been conducted for better comparison. As a result a new model (F rudder) has been developed. The new model turned out to have stable pressure distribution along the surface and so the cavitation inception speeds within ${\pm}5^{\circ}$ of rudder angle were delayed approx. 4 knots in average.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (KP505 프로펠러의 단독성능 시험을 위한 유동해석에 관한 연구)

  • Lee, Han-Seop;Kim, Min-Tae;Kim, Won-Seop;Lee, Jong-Hoon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.150-155
    • /
    • 2019
  • Cavitation refers to a phenomenon in which empty spaces occur in a fluid due to changes in pressure and a velocity. When a liquid moves at a high speed, the pressure drops below the vapor pressure, and vapor bubbles are generated in the liquid. This study used CFD to analyze the flow of fluid machinery used in marine and offshore plants. The goals are to ensure the validity of the analysis method for marine propellers in an open water test, to increase the forward ratio, and to use FLUENT to understand the flow pattern due to cavitation. A three-dimensional analysis was performed and compared with experimental data from MOERI. The efficiency was highest at advance ratios of 0.7 - 0.8. Thrust was generated due to the difference between the pressure surface and the suction surface, and it was estimated that bubbles would be generated in the vicinity of the back side surface rather than the face side of the propeller, resulting in more cavitation. The cavitation decreased sharply as the advance ratio increased. The thrust and torque coefficients were comparable to those of the MOERI experimental data except at the advance ratio of 1, which showed a difference of less than 5%. Therefore, it was confirmed that CFD can evaluate an open water propeller test.

An Investigation on CPP Design Technology (CPP 설계기법 연구)

  • Song, In-Haeng;Lee, Tae-Goo;Han, Jae-Moon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.68-73
    • /
    • 2007
  • CPP is widely utilized in RoPax ship, shuttle tanker etc. due to excellent manoeuvrability in low speed, and its usage is recently increased. The CPP was almost designed by CPP maker, and its performance seemed to be not fully optimized. In this study the whole CPP design procedure was reviewed and design technology of CPP was settled down including calculation of spindle torque and MOI, which was fully confirmed by KHI CPP maker. In order to confirm the CPP design technique, a CPP for shuttle tanker was designed and its performance was verified through series of model tests. The propeller efficiency and face cavitation performance of the CPP was well improved. This CPP design technology will be contributed to the optimization of performance and cooperation with CPP maker.

  • PDF

Two Dimensional Analysis for Lubrication of the Piston Ring of Internal Combustion Engine (내연기관 피스톤 링의 2차원 윤활 해석)

  • 이재선;한동철;이수목;정균양
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 1997
  • This paper considers two dimensional analysis for lubrication between the single piston ring and the cylinder liner. The piston ring is treated as a reciprocating, hydrodynamic bearing with combined sliding and squeeze motion. Reynolds' equation is used, to model lubrication with Reynolds' cavitation boundary condition. This analysis is developed to get the cyclic variation of minimum film thickness and viscous frictional force. Two types of piston ring face shape are considered. This result can be used to study the influence of ring shape design parameter to improve the characteristics of sealing and lubrication.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.