• 제목/요약/키워드: Face-Detection

검색결과 1,087건 처리시간 0.027초

SVM을 이용한 얼굴 검출 성능 향상에 대한 연구 (A Study on the Performance Enhancement of Face Detection using SVM)

  • 이지근;정성태
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.330-337
    • /
    • 2005
  • 본 논문에서는 SVM(Support Vector Machine)을 이용하여 얼굴 검출 성능을 향상시키는 방법을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다 실험 결과 본문에서 제안한 방법은 기존의 방법에 비하여 얼굴 검출의 정확도를 향상시켰다.

Study On Masked Face Detection And Recognition using transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.294-301
    • /
    • 2022
  • COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.

대규모 비디오 감시 환경에서 프라이버시 보호를 위한 다중 레벨 특징 기반 얼굴검출 방법에 관한 연구 (Face Detection Using Multi-level Features for Privacy Protection in Large-scale Surveillance Video)

  • 이승호;문정익;김형일;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1268-1280
    • /
    • 2015
  • In video surveillance system, the exposure of a person's face is a serious threat to personal privacy. To protect the personal privacy in large amount of videos, an automatic face detection method is required to locate and mask the person's face. However, in real-world surveillance videos, the effectiveness of existing face detection methods could deteriorate due to large variations in facial appearance (e.g., facial pose, illumination etc.) or degraded face (e.g., occluded face, low-resolution face etc.). This paper proposes a new face detection method based on multi-level facial features. In a video frame, different kinds of spatial features are independently extracted, and analyzed, which could complement each other in the aforementioned challenges. Temporal domain analysis is also exploited to consolidate the proposed method. Experimental results show that, compared to competing methods, the proposed method is able to achieve very high recall rates while maintaining acceptable precision rates.

복합 칼라모델과 얼굴 특징자를 이용한 실시간 얼굴 검출 추적과 기울어진 얼굴보정 시스템 (Real-Time Face Detection, Tracking and Tilted Face Image Correction System Using Multi-Color Model and Face Feature)

  • 이응주
    • 한국멀티미디어학회논문지
    • /
    • 제9권4호
    • /
    • pp.470-481
    • /
    • 2006
  • 본 논문에서는 복합 컬러모델과 얼굴특정 정보를 이용하여 실시간으로 얼굴영역을 검출 추적하고 기울어진 얼굴영상을 보정하는 시스템을 제안하였다. 제안한 시스템은 YCbCr과 YIQ 컬러모텔을 사용하여 얼굴 후보영역을 검출하였다. 얼굴 후보영역에서 수평 수직 투영기법을 사용하여 얼굴을 검출하고 하우스도르프 정합 방법을 사용하여 얼굴을 추적하였다. 또한 검출된 얼굴영상으로부터 눈 특징자의 기울기 정보를 보정함으로써 얼굴 기울기를 보정하였다. 실험결과 제안한 알고리즘이 주위환경 변화가 있는 실시간 얼굴검출과 추적 및 기울어진 얼굴인식에 강인하였다. 실험에서는 110개의 테스트 얼굴 영상을 사용하여 좋은 성능결과를 얻었다. 실험결과 얼굴검출과 얼굴추적율은 각각 92.27%와 92.70%를 나타내었고 얼굴 정보들로부터 90.0%의 얼굴인식율을 얻었다.

  • PDF

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권2호
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

복잡한 배경의 칼라영상에서 Face and Facial Features 검출 (Detection of Face and Facial Features in Complex Background from Color Images)

  • 김영구;노진우;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.69-72
    • /
    • 2002
  • Human face detection has many applications such as face recognition, face or facial feature tracking, pose estimation, and expression recognition. We present a new method for automatically segmentation and face detection in color images. Skin color alone is usually not sufficient to detect face, so we combine the color segmentation and shape analysis. The algorithm consists of two stages. First, skin color regions are segmented based on the chrominance component of the input image. Then regions with elliptical shape are selected as face hypotheses. They are certificated to searching for the facial features in their interior, Experimental results demonstrate successful detection over a wide variety of facial variations in scale, rotation, pose, lighting conditions.

  • PDF

FLD를 이용한 얼굴 검출 알고리즘의 성능 향상 (Performance Enhancement of Face Detection Algorithm using FLD)

  • 남미영;김광백
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.783-788
    • /
    • 2004
  • 영상에서 얼굴이 있는 위치를 찾거나 얼굴을 검출하기 위한 많은 방법들이 연구되고 있다. 영상에서 얼굴 검출은 얼굴의 크기, 얼굴이 있는 위치, 그리고 다양한 포즈, 조명 상태 등의 변화에 따라 달라진다 따라서 얼굴 검출과 인식에 있어서의 어려운 점은 얼굴의 크기와 위치, 거리, 조명, 포즈 때문에 나타나는 것이다. 본 논문에서는 다양한 얼굴 크기와 얼굴이 있는 위치 등에 강인한 얼굴 검출을 위해 피셔의 선형 판별 함수를 이용하는 방법을 제안한다. 선형 판별식을 이용하여 효과적으로 얼굴을 검출하기 위해서는 학습 방법 및 학습에 사용되는 데이터들의 구성이 중요하다. 그 이유는, 얼굴 검출을 위해 사용되는 학습 데이터들은 조명과 포즈에 영향을 받기 때문에 얼굴의 특징들을 반영하는 학습 데이터들의 구성이 중요하다. 따라서 본 논문에서는 복잡한 배경과 다양한 크기의 얼굴을 검출하기 위한 계층적인 방법을 제시하며, 효과적인 피셔 판별 분석을 위하여 얼굴과 비얼굴 학습 데이터의 효율적인 분류 방법을 제안한다.

적응적 얼굴검출 및 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘 (Adaptive Face Region Detection and Real-Time Face Identification Algorithm Based on Face Feature Evaluation Function)

  • 이응주;김정훈;김지홍
    • 한국멀티미디어학회논문지
    • /
    • 제7권2호
    • /
    • pp.156-163
    • /
    • 2004
  • 본 논문에서는 적응적 얼굴영역 검출과 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘을 제안하였다. 제안한 알고리즘은 명암도 정보와 타원마스킹 기법뿐만 아니라 인종별 얼굴피부색을 사용하여 정확한 얼굴영역을 적응적으로 검출 가능하다. 또한 제안한 알고리즘은 얼굴 특징자 및 얼굴특징자간 기하학적 평가함수를 사용하여 얼굴 인식 효율을 개선하였다. 제안한 알고리즘은 생체인증 및 보안 시스템 분야에 사용 가능하다. 실험에서는 제안한 방법의 우수성을 입증하기 위해 실 영상을 사용하였으며 실험 결과 기존의 방법보다 얼굴 영역 검출뿐만 아니라 얼굴인식 성능을 개선하였다.

  • PDF

JointBoost 알고리즘을 이용한 기울어진 얼굴 검출 (Inclined Face Detection using JointBoost algorithm)

  • 정윤호;송영모;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제15권5호
    • /
    • pp.606-614
    • /
    • 2012
  • AdaBoost 알고리즘을 이용한 얼굴 검출 방법은 가장 빠르고 신뢰성 있는 얼굴 검출 알고리즘의 하나로 이를 향상하거나 확장한 많은 알고리즘들이 제안되었다. 그러나 이전의 접근들은 대부분 정면 얼굴만을 다루고 있고 AdaBoot 알고리즘을 정면과 기울어진 얼굴에 동일한 특징으로 적용함으로써 기울어진 얼굴에 대한 분별 성능이 제한적이었다. 또한 회전된 얼굴을 검출하기 위하여 입력된 영상을 회전하여 정면 얼굴 검출 방법을 적용하거나 회전된 각도에 따라 다른 검출기를 적용하는 기존 기법들은 연산량이 많고 검출률이 저하되는 문제를 가지고 있다. 본 논문에서는 이러한 문제를 극복하기 위해 JointBoost를 이용한 기울어진 얼굴 검출 방법을 제안한다. JointBoost를 통해 클래스간의 공유된 feature들를 찾음으로써 연산량과 샘플 복잡도를 감소시켰다. 실험 결과를 통해 제안된 방법의 검출률이 동일한 반복 횟수를 가지는 학습에서 기존의 AdaBoost 기법에 비해 2% 이상 우수함을 보인다. 또한 제안된 방법은 얼굴의 존재를 검출할 뿐만 아니라 기울어진 방향에 대한 정보도 제공할 수 있다.

컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법 (A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance)

  • 지은미;윤호섭;이상호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.809-817
    • /
    • 2002
  • 본 논문은 온라인 얼굴 인식에서 전처리에 해당하는 얼굴 검출방법을 다룬다. 기존의 얼굴 검출 방법에서 에지 정보만을 이용한 얼굴 검출 방법과 컬러 정보를 이용한 얼굴 검출 방법의 단점을 상호 보완하기 위해 본 연구에서는 에지 정보와 컬러 정보를 결합한 얼굴 검출 방법 및 중심 영역 컬러 샘플링을 이용한 얼굴 검출방법을 개발하였다. 즉, 사람의 얼굴 영역이 비슷한 컬러를 가진 배경 영역과 결합(Merge)되는 것을 막기 위해 먼저 적응형 에지 검출 알고리즘을 수행하여 배경과 얼굴 영역을 각각의 고립 영역으로 분할한다. 제안된 적응형 소벨(Sobel) 에지 검출기는 배경 영역과 얼굴 영역의 경계에서 항상 에지가 발생할 수 있도록 에지가 많이 검출되고 입력 영상의 밝기 변화에 강인하다. 이로 인해 얼굴 영역이 하나의 영역이 아닌 여러 영역으로 분할되어 나타날 수 있으므로, 각 영역들의 컬러 정보를 이용해 병합한 후, 최종 얼굴 영역을 MBR(minimum bounding rectangle) 형태로 검출하였다. 이때 병합된 최종 얼굴 영역 후보가 너무 크거나 혹은 너무 작으면, 중심 영역 샘플링 방법을 이용해 다시 얼굴 영역을 검출한다. 총 2100장의 얼굴 영상 데이터베이스를 통해 실험한 결과 본 연구에서 제안한 방법을 사용해 96.3%의 높은 얼굴 영역 검출 성공률을 얻을 수 있었다.