• Title/Summary/Keyword: Face wall

Search Result 192, Processing Time 0.016 seconds

MICROTENSILE BONDING OF RESIN FIBER REINFORCED POST TO RADICULAR DENTIN USING RESIN CEMENT (레진 시멘트를 이용한 레진 파이버 강화 레진포스트의 치근 상아질에 대한 미세인장결합강도)

  • Kim, Jin-Woo;Yu, Mi-Kyung;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • Object The purpose of this study were to evaluate the microtensile bond strength of resin fiber reinforced post to radicular dentin using resin cement according to various dentin surface treatment and to observe the inter face between post and root dentin under SEM Material and Method A total 16 extracted human single rooted teeth were used. A lingual access was made using a #245 carbide bur in a high-speed handpiece with copious air water spray. The post space was mechanically enlarged using H-file(up to #60) and Gates Glidden bures(#3). This was followed by refining of the canal space using the calbrating drill set provided in ER Dentinpost(GEBR, BRASSELER GmbH&Co. KG). The 16 teeth were randomly distributed into 4 group of 4 teeth. Group 1 teeth had their post space prepared using 10% phosphoric acid as root canal surface treatment agent during 20s. The canal was then rinsed with saline and dried with paper point. Group 2 teeth had their post space prepared using 3% NaOCl as root canal surface treatment agent during 30min. The canal was then rinsed with saline and dried with paper point. Group 3 teeth had their post space prepared using 17% EDTA as root canal surface treatment agent during 1min. The canal was then rinsed with saline and dried with paper point. Group 4 teeth had their post space prepared using 17% EDTA as root canal surface treatment agent during 1min. After rinsing with saline, the canal was rinced 10m1 of 3% NaOCl for 30min. After drying with paper point, the post(ER Dentinpost, GEBR, BRASSELER GmbH&Co. KG) was placed in the treated canals using resin cement. Once the canal was filled with resin cement(Super bond C&B sunmedical co. Ltd.), a lentulo was inserted to the depth of the canal to ensure proper coating of the root canal wall. After 24 hours, acrylic resin blocks($10{\cdot}10{\cdot}50mm$) were made. The resin block was serially sectioned vertically into stick of $1{\cdot}1mm$. Twenty sticks were prepared from each group. After that, tensile bond strengths for each stick was measured with Microtensile Tester. Failure pattern of the specimen at the interface between post and dentin were observed under SEM. Results 1. Tensile bond strengths(meen{\pm}SD$) ) were expressed with ascending order as follows group 4, $12.52{\pm}6.60$ ; group 1, $7.63{\pm}5.83$ ; group 2, $4.13{\pm}2.31$ ; group 3, $3.31{\pm}1.44$. 2. Tensile bond strengths of Group 4 treated with 17% EDTA +3%NaOCl were significant higher than those of group 1, 2 and 3 (p<0.05). 3. Tensile bond strengths of Group 1 treated with 10% phosphoric acid were significant higher than those of group 2 (p<0.05). Tensile bond strengths of Group 4 treated with 17% EDTA +3% NaOCl was significant higher than those of other groups.

Space Development and Law in Asia (아시아의 우주개발과 우주법)

  • Cho, Hong-Je
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.349-384
    • /
    • 2013
  • The Sputnik 1 launching in 1957 made the world recognize the necessity of international regulations on space development and activities in outer space. The United Nations established COPUOS the very next year, and adopted the mandate to examine legal issues concerning the peaceful uses of outer space. At the time, the military sector of the U.S.A. and the Soviet Union were in charge of the space development and they were not welcomed to discuss the prohibition of the military uses of outer space at the legal section in the COPUOS. Although both countries had common interests in securing the freedom of military uses in outer space. As the social and economic benefits derived from space activities have become more apparent, civil expenditures on space activities have continued to increase in several countries. Virtually all new spacefaring states explicitly place a priority on space-based applications to support social and economic development. Such space applications as satellite navigation and Earth imaging are core elements of almost every existing civil space program. Likewise, Moon exploration continues to be a priority for such established spacefaring states as China, Russia, India, and Japan. Recently, Companies that manufacture satellites and ground equipment have also seen significant growth. On 25 February 2012 China successfully launched the eleventh satellite for its indigenous global navigation and positioning satellite system, Beidou. Civil space activities began to grow in China when they were allocated to the China Great Wall Industry Corporation in 1986. China Aerospace Corporation was established in 1993, followed by the development of the China National Space Administration. In Japan civil space was initially coordinated by the National Space Activities Council formed in 1960. Most of the work was performed by the Institute of Space and Aeronautical Science of the University of Tokyo, the National Aerospace Laboratory, and, most importantly, the National Space Development Agency. In 2003 all this work was assumed by the Japanese Aerospace Exploration Agency(JAXA). Japan eases restrictions on military space development. On 20 June 2012 Japan passed the Partial Revision of the Cabinet Establishment Act, which restructured the authority to regulate Japanese space policy and budget, including the governance of the JAXA. Under this legislation, the Space Activities Commission of the Ministry of Education, Culture, Sports, Science, and Technology, which was responsible for the development of Japanese space program, will be abolished. Regulation of space policy and budget will be handed over to the Space Strategy Headquarter formed under the Prime Minister's Cabinet. Space Strategy will be supported by a Consultative Policy Commission as an academics and independent observers. By revoking Article 4 (Objectives of the Agency) of a law that previously governed JAXA and mandated the development of space programs for "peaceful purposes only," the new legislation demonstrates consistency with Article 2 of the 2008 Basic Space Law. In conformity with the principles laid down in the 1967 Outer Space Treaty JAXA is now free to pursue the non-aggressive military use of space. New legislation is the culmination of a decade-long process that sought ways to "leverage Japan's space development programs and technologies for security purposes, to bolster the nation's defenses in the face of increased tensions in East Asia." In this connection it would also be very important and necessary to create an Asian Space Agency(ASA) for strengthening cooperation within the Asian space community towards joint undertakings.

  • PDF