최근 딥러닝 기반의 얼굴 합성 연구는 전체적인 스타일이나 헤어, 안경, 화장과 같은 요소를 포함하는 매우 사실적인 얼굴을 생성하는 결과를 보인다. 그러나 피부의 미세 구조와 같은 매우 세부적인 수준의 얼굴은 생성하지 못한다. 본 논문에서는 이러한 한계점을 극복하고자 한 장의 얼굴 라벨 영상으로부터 피부 미세 요소의 종류와 강도 조절을 통해 더욱 사실적인 얼굴 영상을 합성하는 기법을 제안한다. 제안하는 기법은 Image-to-Image Translation 방법인 Pix2PixHD를 이용해 얼굴 영역과 피부 요소인 주름, 모공, 홍조가 표시된 라벨 영상을 변환하여 미세 요소가 추가된 얼굴 영상을 생성한다. 피부 요소 영역을 조절한 라벨 영상을 다양하게 생성함으로써 이에 대응하는 미세한 피부 요소가 반영된 다양한 사실적인 얼굴 영상을 생성할 수 있음을 실험을 통해 보인다.
본 논문은 Active Appearance Model(AAM)을 사용하여 주어진 얼굴영상의 포즈추정과 임의 포즈합성 방법을 설명한다. AAM은 다양한 응용분야에 성공적으로 적용되어지고 있는 예제기반 학습모델로 예제들의 변화정도를 학습한다. 그러나 하나의 모델로는 각도 변화가 큰 포즈 변화량을 수용하기 어렵다. 본 논문은 좁은 범위의 각도 변화를 다루는 모델을 포즈별로 생성한다. 주어진 포즈 얼굴을 다룰 수 있는 모델을 이용하여 정확한 포즈추정과 합성이 가능하다. 이때 합성하고자 하는 포즈의 각도가 포즈 추정을 위해 사용된 모델에 학습되어 있지 않은 경우, 미리 학습된 모델간의 선형관계를 통해 문제를 해결한다. Yale B 공개 얼굴 데이터베이스에 대한 실험을 통해 포즈추정 및 합성 정확도를 보이고, 자체 수집한 포즈변화가 큰 얼굴영상에 대한 성공적인 정면 합성 결과를 제시한다.
Han, Chung-Shin;Go, Min Soo;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Ji-Sang
IEIE Transactions on Smart Processing and Computing
/
제2권1호
/
pp.27-35
/
2013
This paper proposes a face tracking algorithm for a viewpoint adaptive multi-view synthesis system. The original scene captured by a depth camera contains a texture image and 8 bit gray-scale depth map. From this original image, multi-view images that correspond to the viewer's position can be synthesized using geometrical transformations, such as rotation and translation. The proposed face tracking technique gives a motion parallax cue by different viewpoints and view angles. In the proposed algorithm, the viewer's dominant face, which is established initially from a camera, can be tracked using the statistical characteristics of face colors and deformable templates. As a result, a motion parallax cue can be provided by detecting the viewer's dominant face area and tracking it, even under a heterogeneous background, and synthesized sequences can be displayed successfully.
Tang, Songze;Zhou, Xuhuan;Zhou, Nan;Sun, Le;Wang, Jin
Journal of Information Processing Systems
/
제15권6호
/
pp.1449-1461
/
2019
Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.
본 연구에서는 기존의 동영상 합성 네트워크에 스타일 합성 네트워크를 접목시켜 동영상에 대한 스타일 합성의 한계점을 극복하고자 한다. 본 논문의 네트워크에서는 동영상 합성을 위해 스타일갠 학습을 통한 스타일 합성과 동영상 합성 네트워크를 통해 스타일 합성된 비디오를 생성하기 위해 네트워크를 학습시킨다. 인물의 시선이나 표정 등이 안정적으로 전이되기 어려운 점을 개선하기 위해 3차원 얼굴 복원기술을 적용하여 3차원 얼굴 정보를 이용하여 머리의 포즈와 시선, 표정 등의 중요한 특징을 제어한다. 더불어, 헤드투헤드++ 네트워크의 역동성, 입 모양, 이미지, 시선 처리에 대한 판별기를 각각 학습시켜 개연성과 일관성이 더욱 유지되는 안정적인 스타일 합성 비디오를 생성할 수 있다. 페이스 포렌식 데이터셋과 메트로폴리탄 얼굴 데이터셋을 이용하여 대상 얼굴의 일관된 움직임을 유지하면서 대상 비디오로 변환하여, 자기 얼굴에 대한 3차원 얼굴 정보를 이용한 비디오 합성을 통해 자연스러운 데이터를 생성하여 성능을 증가시킴을 확인했다.
얼굴 구성 요소 각각에 대한 파라미터로부터 특정한 포즈나 표정을 갖는 얼굴 이미지를 합성하는 방법을 제안한다 이러한 파라미터화는 얼굴 이미지의 표현과 저장, 전송을 효과적으로 수행할 수 있도록 한다. 그러나 얼굴 이미지의 변화는 고차원의 이미지 공간에서 복잡한 비선형 매니폴드를 구성하기 때문에 파라미터화 하는 것이 쉽지 않다. 이러한 문제점을 해결하기 위해, 얼굴 이미지에 대한 표현방법으로 LLE (Locally Linear Embedding) 알고리즘을 사용한다. LLE 알고리즘은 얼굴 이미지들 사이의 관계를 유지하면서 저차원의 특징 공간으로 투사된 매니폴드를 더욱 부드럽고 연속적으로 만들어준다. 그 다음, 특징공간에서 특정한 포즈나 표정 파라미터에 해당하는 포인트를 추정하기 위해 snake 모델을 적용한다. 마지막으로, 추정된 특징 값의 주변에 있는 여러 장의 얼굴 이미지들의 가중치 평균을 구해 합성된 결과이미지를 만든다 실험결과를 통해 제안된 방법을 이용하면 겹침 현상이 적고 포즈나 표정에 대한 파라미터의 변화와 일치하는 이미지를 합성한다는 것을 보인다.
코로나19 팬데믹으로 인해 마스크 착용이 일상화되면서 마스크 착용 얼굴을 식별하는 얼굴인식 연구에 대한 중요도가 높아지고 있다. 안정된 얼굴인식 성능을 위해서는 인식 대상에 대한 풍부한 학습용 이미지 확보가 필요하지만 인물 별로 마스크 착용 얼굴 이미지를 다량 확보하는 것은 쉽지 않다. 본 논문에서는 마스크 미착용 얼굴 이미지에 가상의 마스크 패턴을 합성하는 새로운 방법을 제안한다. 제안 방법은 동일 인물에 대해 마스크 미착용 얼굴 이미지와 마스크 착용 얼굴 이미지를 쌍으로 컨볼루션 오토인코더에 입력하여 얼굴과 마스크의 기하학적 관계를 학습한다. 학습이 완료된 컨볼루션 오토인코더는 학습에 사용되지 않은 새로운 마스크 미착용 얼굴 이미지에 가상의 마스크 패턴을 자연스러운 형태로 합성해준다. 제안 방법은 고속으로 대량의 마스크 착용 얼굴 이미지를 생성할 수 있으며, 얼굴 특징점 추출에 기반하는 마스크 합성 방법에 비해 실용적이다.
본 논문에서는 특징 기반 방법인 YCbCr 컬러 모델을 이용하여 얼굴색 분포를 분할하고, 전처리 과정에서 양자화를 하여 특징 기반의 단점 중의 하나인 조명에 민감한 것을 둔감하도록 하였다. 또한 러프 집합을 이용하여 패턴의 형태로 가장 근사한 영상의 객체를 선택하는 특성을 가지게 함으로 영상 합성의 정확도를 높였다. 본 논문에서 제안된 얼굴 검출 알고리즘은 다양한 얼굴 크기 및 방향에 관계없이 기존의 알고리즘보다 약 2~3%정도 우수함을 시뮬레이션을 통해 확인하였다.
Muscle based face image synthesis is one of the most realistic approach to realize life-like agent in computer. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces are calculated effecting facial tissue element by contraction of each muscle strength, so the combination of each muscle parameter decide a specific facial expression. Now each muscle parameter is decided on trial and error procedure comparing the sample photograph and generated image using our Muscle-Editor to generate a specific face image. In this paper, we propose the strategy of automatic estimation of facial muscle parameters from 2D marker movement using neural network. This also 3D motion estimation from 2D point or flow information in captered image under restriction of physics based face model.
This paper proposes a synchronization method of synthetic facial iamge sequences and synthetic speech. The LP-PSOLA synthesizes the speech for each demi-syllable. We provide the 3,040 demi-syllables for unlimited synthesis of the Korean speech. For synthesis of the Facial image sequences, the paper defines the total 11 fundermental patterns for the lip shapes of the Korean consonants and vowels. The fundermental lip shapes allow us to pronounce all Korean sentences. Image synthesis method assigns the fundermental lip shapes to the key frames according to the initial, the middle and the final sound of each syllable in korean input text. The method interpolates the naturally changing lip shapes in inbetween frames. The number of the inbetween frames is estimated from the duration time of each syllable of the synthetic speech. The estimation accomplishes synchronization of the facial image sequences and speech. In speech synthesis, disk memory is required to store 3,040 demi-syllable. In synthesis of the facial image sequences, however, the disk memory is required to store only one image, because all frames are synthesized from the neutral face. Above method realizes synchronization of system which can real the Korean sentences with the synthetic speech and the synthetic facial iage sequences.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.