• Title/Summary/Keyword: Face Velocity

Search Result 207, Processing Time 0.02 seconds

The Prediction Model of Carbonation Process by CO2 Diffusion Using the Air Permeability Coefficient for Concrete (콘크리트의 투기계수를 이용한 CO2확산 탄산화진행 예측모델)

  • Kang, Suk-Pyo;Kim, Young-Sun;Song, Ha-Won;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Recently, some mathematical models for the prediction on progress of carbonation of concrete were reported. These models take account for $CO_2$ diffusion and chemical reaction between $Ca(OH)_2$ and $CO_2$. Based on the assumption that $CO_2$ diffuses in the carbonation zone and reacts with $Ca(OH)_2$ at the outer face of carbonation zone and non-carbonation zone. In this study, a mathematical model to predict the progress of carbonation of concrete has been established based on the reducing concentration of $Ca(OH)_2$ in the carbonation progress zone, where $Ca(OH)_2$ reacts with $CO_2$ and $Ca(OH)_2$ and $CaCO_3$ coexist. Also, the prediction model of carbonation progress rate of concrete using the air permeability coefficient regarding to $CO_2$ diffusion is developed. As a result of this study, an expression, the model equation is obtained for the prediction of carbonation based on the time and interaction velocity between $CO_2$ and Ca(OH)$_2$ dependent air permeability coefficient. The prediction by the model satisfied the experimental data of the accelerated carbonation for painted concrete. Consequently, the model can predict the rate of carbonation and the potential service life of concrete structure exposed to atmosphere.

The Effect of $MnO_2$ Addition on the $V_2O_5/TiO_2$ Catalytic Filters for NO Reduction (NO 환원반응을 위한 $V_2O_5/TiO_2$계 촉매필터의 $MnO_2$ 조촉매 효과)

  • Shin, Hae-Joong;Choi, Jae-Ho;Song, Young-Hwan;Lee, Ju-Young;Jang, Sung-Cheol;Choi, Joo-Hong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.363-368
    • /
    • 2008
  • Nitrogen oxides (NO, $NO_2$ and $N_2O$) have been controlled effectively by the SCR catalysts coated on monolith or honeycomb in commercial sites with ammonia as reductant at high temperature range $300{\sim}400^{\circ}C$. However, the catalytic filter has much merit on the point of controlling the particles and nitrogen oxides simultaneously. It will be more advanced-system if the catalytic working temperature is reduced to the normal filtration temperature of under $200^{\circ}C$. This study has focus on the development of the catalytic filter working at the low temperature. So the additive effect of the components such as Pt and Mn (which are known the catalytic component of $V_2O_5/TiO_2$ was investigated. The $V_2O_5-WO_3$ catalytic filter exhibited high activity and selectivity at $250{\sim}320^{\circ}C$ showing more than 95% NO conversion for the treatment of 600 ppm NO at face velocity 2 cm/s. The Pt-$V_2O_5-WO_3$ catalytic filter shifted the optimum working temperature towards the lower temperature ($170{\sim}200^{\circ}C$). And NO conversion was 100% and higher than that of $V_2O_5-WO_3$ catalyst at $250{\sim}320^{\circ}C$. The $MnO_X-V_2O_5-WO_3$ catalytic filter showed the wide temperature range of $220{\sim}330^{\circ}C$ for more than 95% NO conversion. This is a remarkable advantage when considered the $MnO_X$ catalytic filter presents the maximum activity at $150{\sim}250^{\circ}C$ and $V_2O_5-WO_3$ catalytic filter shows the maximum activity at $250{\sim}320^{\circ}C$.

  • PDF

NO Reduction Performance of V2O5-WO3/TiO2 Catalyst Supported on a Ceramic Sheet Filter (세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능)

  • Choi, Joo Hong
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Catalytic filter has many advantages for the industrial application owing to its bi-functional ability to treat nitrogen oxides and particulate simultaneously. The technical feasibility of using the catalytic filter in the flue gas treatment process will be more promoted if the high porous ceramic sheet filter is utilized. However, it is not easy to prepare the effective catalytic filter using sheet filter as it has less room for catalyst support due to its thin layer. In this study, catalytic filter using a domestic ceramic sheet filter element has been prepared and conducted the experimental evaluation for NO reduction performance. The current sheet filter element shows the low catalytic activity less than 92% conversion for NO concentration 700 ppm at the face velocity $0.02m\;s^{-1}$. This unexpected low catalytic activity seems to be caused by the present of extraordinary large pores from the lack of uniformity in the pore size distribution of the sheet filter. The large pore size of the sheet filter is reduced by composing the smaller powder as its raw material, which presents improvement in NO conversion more than 96%. More improvement is observed showing 98% NO conversion which is applicable to a commercial plant when the catalyst coating layer is expanded by adding the large $TiO_2$ particles during the catalyst preparation. Both of above two methods is regarded as that the broad gates of the larger pores in the coating layer are effectively filled with the proper catalyst. So these results encourage the utilization of sheet filter as a good catalytic filter material with its potential merit of high permeability.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (KP505 프로펠러의 단독성능 시험을 위한 유동해석에 관한 연구)

  • Lee, Han-Seop;Kim, Min-Tae;Kim, Won-Seop;Lee, Jong-Hoon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.150-155
    • /
    • 2019
  • Cavitation refers to a phenomenon in which empty spaces occur in a fluid due to changes in pressure and a velocity. When a liquid moves at a high speed, the pressure drops below the vapor pressure, and vapor bubbles are generated in the liquid. This study used CFD to analyze the flow of fluid machinery used in marine and offshore plants. The goals are to ensure the validity of the analysis method for marine propellers in an open water test, to increase the forward ratio, and to use FLUENT to understand the flow pattern due to cavitation. A three-dimensional analysis was performed and compared with experimental data from MOERI. The efficiency was highest at advance ratios of 0.7 - 0.8. Thrust was generated due to the difference between the pressure surface and the suction surface, and it was estimated that bubbles would be generated in the vicinity of the back side surface rather than the face side of the propeller, resulting in more cavitation. The cavitation decreased sharply as the advance ratio increased. The thrust and torque coefficients were comparable to those of the MOERI experimental data except at the advance ratio of 1, which showed a difference of less than 5%. Therefore, it was confirmed that CFD can evaluate an open water propeller test.

Characteristics of Large-area PTFE Filter Coated with PTFE Nanofiber Fabricated by Roll-to-roll Equipment (Roll-to-roll 공정으로 제조한 나노섬유가 코팅된 대면적 PTFE 필터 특성)

  • Ahn, Seunghwan;Lee, Woo Jin;Kim, Yeonsang;Shim, Euijin;Eom, Hyeonjin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.613-617
    • /
    • 2022
  • The equipment for fabricating the large-area PTFE nanofiber coated-PTFE foam filter for use as filtration parts of the baghouse that removes particulate matter (PM) in industrial sites was designed and manufactured in this study. The PTFE nanofiber was coated on a commercial PTFE foam filter to increase its PM collection efficiency. The equipment and fabrication processes using a roll-to-roll system were proposed to continuously coat PTFE nanofibers on the surface of the PTFE foam filter. The electrospinning and annealing parts were designed and made by optimizing the equipment for the roll-to-roll system. The surface morphology, composition, and filtration characteristics of the large-area filter fabricated by this equipment were confirmed. PTFE nanofibers were uniformly coated on the large-area filter, and the PTFE nanofiber coated-PTFE foam filter showed PM2.5 collection efficiency of 91.79% and an appropriate pressure drop of 62 Pa with a face velocity of 1 m/min at 280 ℃.

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

The Effect of SO2 and H2O on the NO Reduction of V2O5-WO3/TiO2/SiC Catalytic Filter (V2O5-WO3/TiO2/SiC 촉매필터의 NO 환원에 SO2와 H2O가 미치는 영향)

  • Ha, Ji-Won;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.688-693
    • /
    • 2014
  • For investigating NO reduction activity of an catalytic filter, the catalytic performance was measured under the presence of $SO_2$ and $H_2O$, respectively or simultaneously in the simulation gas composed of NO, $NH_3$, and air. The catalytic filter was prepared by coating $V_2O_5-WO_3/TiO_2$ catalyst on the pore surface of SiC filter element of which the superior performance for the particulate removal was well known. At the temperature below $260^{\circ}C$, the catalytic activities were enormously decreased under the presence of $SO_2$ and $H_2O$, respectively or simultaneously, compared with those under the cases of the absence of $SO_2$ and $H_2O$. However, the presence of $SO_2$ promoted the performance of the catalytic filter above $320^{\circ}C$ with showing the NO conversion better than 99.8% for the NO inlet concentration of 500 ppm and at the face velocity of 2 cm/s. In particular, the presence of water showed high NO conversion higher than 99% up to high temperature of $380^{\circ}C$. This effect of water was explained by the reason that it retarded the ammonia oxidation which is the main step into the formation of $N_2O$. The initial NO reduction activity of the catalytic filter maintained for the duration of 100 hours in the presence of $SO_2$ and $H_2O$. Therefore, it was concluded that the catalytic filter was promisingly useful for the industrial NOx reduction catalyst in order to treat the particulate and NO simultaneously.