• Title/Summary/Keyword: Face Region Detection

Search Result 270, Processing Time 0.027 seconds

Face region detection algorithm of natural-image (자연 영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • In this paper, we proposed a method for face region extraction by skin-color hue, saturation and facial feature extraction in natural images. The proposed algorithm is composed of lighting correction and face detection process. In the lighting correction step, performing correction function for a lighting change. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. Eye detection using C element in the CMY color model and mouth detection using Q element in the YIQ color model for extracted candidate areas. Face area detected based on human face knowledge for extracted candidate areas. When an experiment was conducted with 10 natural images of face as input images, the method showed a face detection rate of 100%.

Real-Time Automatic Human Face Detection and Recognition System Using Skin Colors of Face, Face Feature Vectors and Facial Angle Informations (얼굴피부색, 얼굴특징벡터 및 안면각 정보를 이용한 실시간 자동얼굴검출 및 인식시스템)

  • Kim, Yeong-Il;Lee, Eung-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.491-500
    • /
    • 2002
  • In this paper, we propose a real-time face detection and recognition system by using skin color informations, geometrical feature vectors of face, and facial angle informations from color face image. The proposed algorithm improved face region extraction efficiency by using skin color informations on the HSI color coordinate and face edge information. And also, it improved face recognition efficiency by using geometrical feature vectors of face and facial angles from the extracted face region image. In the experiment, the proposed algorithm shows more improved recognition efficiency as well as face region extraction efficiency than conventional methods.

Face Detection Using Geometrical Information of Face and Hair Region (얼굴과 헤어영역의 기하학적 정보를 이용한 얼굴 검출)

  • Lee, Woo-Ram;Hwang, Dong-Guk;Jun, Byoung-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.194-199
    • /
    • 2009
  • This paper proposes a face detection algorithm that uses geometrical information on face and hair region. This information that face adjoins hair regions can be the important one for face detection. It is also kept in images with frontal, rotated and lateral face. The face candidates are founded by the analysis of skin regions after detecting the skin and hair color regions in an image. Next, the intersected lesions between face candidates and hair's are created. Finally, the face candidates that include the subsets of these regions turn out to be face. Experimental results showed the high detection rates for frontal and lateral faces as well as faces geometrically distorted.

Face Detection using PCA-LDA and Color Information (색상정보와 PCA-LDA를 이용한 얼굴검출)

  • Lee, Ju-Seung;Han, Young-Hwan;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.72-79
    • /
    • 2002
  • This paper presents an efficient face detection algorithm for color images with a complex background. The presented algorithm utilizes the color information and eigenface that is calculated by PCA-LDA (Principle Component Analysis - Linear Discriminant Analysis). The method of using the color information is faster than any other methods. Eigenface includes average information of the whole test faces. Therefore eigenface can decide that the candidate region is a face. The whole process is composed of two steps. First, it finds first face candidates region of skin tone using a color information in image. We can get a size and position of face candidate region. Second, we compare first face candidate region with eigenface, so decide that an image whether include a face or not. The advantages of the proposed approach include that increasing the detection speed by deciding a size and position of first face candidates region. Also, Betting 97% of the detection rate by comparing the eigenfaces calculated in PCA-LDA.

  • PDF

An Efficient Face Region Detection for Content-based Video Summarization (내용기반 비디오 요약을 위한 효율적인 얼굴 객체 검출)

  • Kim Jong-Sung;Lee Sun-Ta;Baek Joong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.675-686
    • /
    • 2005
  • In this paper, we propose an efficient face region detection technique for the content-based video summarization. To segment video, shot changes are detected from a video sequence and key frames are selected from the shots. We select one frame that has the least difference between neighboring frames in each shot. The proposed face detection algorithm detects face region from selected key frames. And then, we provide user with summarized frames included face region that has an important meaning in dramas or movies. Using Bayes classification rule and statistical characteristic of the skin pixels, face regions are detected in the frames. After skin detection, we adopt the projection method to segment an image(frame) into face region and non-face region. The segmented regions are candidates of the face object and they include many false detected regions. So, we design a classifier to minimize false lesion using CART. From SGLD matrices, we extract the textual feature values such as Inertial, Inverse Difference, and Correlation. As a result of our experiment, proposed face detection algorithm shows a good performance for the key frames with a complex and variant background. And our system provides key frames included the face region for user as video summarized information.

Gabor-Features Based Wavelet Decomposition Method for Face Detection (얼굴 검출을 위한 Gabor 특징 기반의 웨이블릿 분해 방법)

  • Lee, Jung-Moon;Choi, Chan-Sok
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.143-148
    • /
    • 2008
  • A real-time face detection is to find human faces robustly under the cluttered background free from the effect of occlusion by other objects or various lightening conditions. We propose a face detection system for real-time applications using wavelet decomposition method based on Gabor features. Firstly, skin candidate regions are extracted from the given image by skin color filtering and projection method. Then Gabor-feature based template matching is performed to choose face cadidate from the skin candidate regions. The chosen face candidate region is transformed into 2-level wavelet decomposition images, from which feature vectors are extracted for classification. Based on the extracted feature vectors, the face candidate region is finally classified into either face or nonface class by the Levenberg-Marguardt back-propagation neural network.

  • PDF

Robust Object Tracking System Based on Face Detection (얼굴검출에 기반한 강인한 객체 추적 시스템)

  • Kwak, Min Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • Embedded devices with the development of modern computer technology also began equipped with a variety of functions. In this study, to provide a method of tracking efficient face with a small instrument of resources, such as built-in equipment that uses an image sensor in recent years has been actively carried out. It uses a face detection method using the features of the MB-LBP in order to obtain an accurate face, specify the region (Region of Interest) around the face when the face detection for the face object tracking in the next video did. And in the video can not be detected faces, to track objects using the CAM-Shift key is a conventional object tracking method, which make it possible to retain the information without loss of object information. In this study, through the comparison with the previous studies, it was confirmed the precision and high-speed performance of the object tracking system.

Design and Implementation of a Real-Time Face Detection System (실시간 얼굴 검출 시스템 설계 및 구현)

  • Jung Sung-Tae;Lee Ho-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1057-1068
    • /
    • 2005
  • This paper proposes a real-time face detection system which detects multiple faces from low resolution video such as web-camera video. First, It finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next, it generates reduced feature vector for each face region candidate by using principle component analysis. Finally, it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine) based binary classification. According to experiment results, the proposed method achieves real-time face detection from low resolution video. Also, it reduces the false detection rate than existing methods by using PCA and SVM based face classification step.

  • PDF

A Real-time Eye Tracking Algorithm for Autostereoscopic 3-Dimensional Monitor (무안경식 3차원 모니터용 실시간 눈 추적 알고리즘)

  • Lim, Young-Shin;Kim, Joon-Seek;Joo, Hyo-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.839-844
    • /
    • 2009
  • In this paper, a real-time eye tracking method using fast face detection is proposed. Most of the current eye tracking systems have operational limitations due to sensors, complicated backgrounds, and uneven lighting condition. It also suffers from slow response time which is not proper for a real-time application. The tracking performance is low under complicated background and uneven lighting condition. The proposed algorithm detects face region from acquired image using elliptic Hough transform followed by eye detection within the detected face region using Haar-like features. In order to reduce the computation time in tracking eyes, the algorithm predicts next frame search region from the information obtained in the current frame. Experiments through simulation show good performance of the proposed method under various environments.

Face Detection by Eye Detection with Progressive Thresholding

  • Jung, Ji-Moon;Kim, Tae-Chul;Wie, Eun-Young;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1689-1694
    • /
    • 2005
  • Face detection plays an important role in face recognition, video surveillance, and human computer interface. In this paper, we present a face detection system using eye detection with progressive thresholding from a digital camera. The face candidate is detected by using skin color segmentation in the YCbCr color space. The face candidates are verified by detecting the eyes that is located by iterative thresholding and correlation coefficients. Preprocessing includes histogram equalization, log transformation, and gray-scale morphology for the emphasized eyes image. The distance of the eye candidate points generated by the progressive increasing threshold value is employed to extract the facial region. The process of the face detection is repeated by using the increasing threshold value. Experimental results show that more enhanced face detection in real time.

  • PDF