• Title/Summary/Keyword: Face Pose Estimation

Search Result 52, Processing Time 0.025 seconds

Head Pose Estimation Based on Perspective Projection Using PTZ Camera (원근투영법 기반의 PTZ 카메라를 이용한 머리자세 추정)

  • Kim, Jin Suh;Lee, Gyung Ju;Kim, Gye Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.7
    • /
    • pp.267-274
    • /
    • 2018
  • This paper describes a head pose estimation method using PTZ(Pan-Tilt-Zoom) camera. When the external parameters of a camera is changed by rotation and translation, the estimated face pose for the same head also varies. In this paper, we propose a new method to estimate the head pose independently on varying the parameters of PTZ camera. The proposed method consists of 3 steps: face detection, feature extraction, and pose estimation. For each step, we respectively use MCT(Modified Census Transform) feature, the facial regression tree method, and the POSIT(Pose from Orthography and Scaling with ITeration) algorithm. The existing POSIT algorithm does not consider the rotation of a camera, but this paper improves the POSIT based on perspective projection in order to estimate the head pose robustly even when the external parameters of a camera are changed. Through experiments, we confirmed that RMSE(Root Mean Square Error) of the proposed method improve $0.6^{\circ}$ less then the conventional method.

Human Face Tracking and Modeling using Active Appearance Model with Motion Estimation

  • Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2017
  • Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.

A New 3D Active Camera System for Robust Face Recognition by Correcting Pose Variation

  • Kim, Young-Ouk;Jang, Sung-Ho;Park, Chang-Woo;Sung, Ha-Gyeong;Kwon, Oh-Yun;Paik, Joon-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1485-1490
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user, does face recognition and vital for many surveillance based systems. Advantage of face recognition when compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to decrease in dimension from of image acquisition step and various changes associated with face pose and background. Factors that deteriorate performance of face recognition are many such as distance from camera to face, lighting change, pose change, and change of facial expression. In this paper, we implement a new 3D active camera system to prevent various pose variation that influence face recognition performance and propose face recognition algorithm for intelligent surveillance system and mobile robot system.

  • PDF

Detection of Face and Facial Features in Complex Background from Color Images (복잡한 배경의 칼라영상에서 Face and Facial Features 검출)

  • 김영구;노진우;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.69-72
    • /
    • 2002
  • Human face detection has many applications such as face recognition, face or facial feature tracking, pose estimation, and expression recognition. We present a new method for automatically segmentation and face detection in color images. Skin color alone is usually not sufficient to detect face, so we combine the color segmentation and shape analysis. The algorithm consists of two stages. First, skin color regions are segmented based on the chrominance component of the input image. Then regions with elliptical shape are selected as face hypotheses. They are certificated to searching for the facial features in their interior, Experimental results demonstrate successful detection over a wide variety of facial variations in scale, rotation, pose, lighting conditions.

  • PDF

Back-Propagation Neural Network Based Face Detection and Pose Estimation (오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정)

  • Lee, Jae-Hoon;Jun, In-Ja;Lee, Jung-Hoon;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.853-862
    • /
    • 2002
  • Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.

A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2720-2736
    • /
    • 2013
  • Multi-view face detection has become an active area for research in the last few years. In this paper, a novel multi-view human face detection algorithm based on improved real Adaboost is presented. Real Adaboost algorithm is improved by weighted combination of weak classifiers and the approximately best combination coefficients are obtained. After that, we proved that the function of sample weight adjusting method and weak classifier training method is to guarantee the independence of weak classifiers. A coarse-to-fine hierarchical face detector combining the high efficiency of Haar feature with pose estimation phase based on our real Adaboost algorithm is proposed. This algorithm reduces training time cost greatly compared with classical real Adaboost algorithm. In addition, it speeds up strong classifier converging and reduces the number of weak classifiers. For frontal face detection, the experiments on MIT+CMU frontal face test set result a 96.4% correct rate with 528 false alarms; for multi-view face in real time test set result a 94.7 % correct rate. The experimental results verified the effectiveness of the proposed approach.

Pose Classification and Correction System for At-home Workouts (홈 트레이닝을 위한 운동 동작 분류 및 교정 시스템)

  • Kang, Jae Min;Park, Seongsu;Kim, Yun Soo;Gahm, Jin Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1183-1189
    • /
    • 2021
  • There have been recently an increasing number of people working out at home. However, many of them do not have face-to-face guidance from experts, so they cannot effectively correct their wrong pose. This may lead to strain and injury to those doing home training. To tackle this problem, this paper proposes a video data-based pose classification and correction system for home training. The proposed system classifies poses using the multi-layer perceptron and pose estimation model, and corrects poses based on joint angels estimated. A voting algorithm that considers the results of successive frames is applied to improve the performance of the pose classification model. Multi-layer perceptron model for post classification shows the highest accuracy with 0.9. In addition, it is shown that the proposed voting algorithm improves the accuracy to 0.93.

Automatic Camera Pose Determination from a Single Face Image

  • Wei, Li;Lee, Eung-Joo;Ok, Soo-Yol;Bae, Sung-Ho;Lee, Suk-Hwan;Choo, Young-Yeol;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1566-1576
    • /
    • 2007
  • Camera pose information from 2D face image is very important for making virtual 3D face model synchronize with the real face. It is also very important for any other uses such as: human computer interface, 3D object estimation, automatic camera control etc. In this paper, we have presented a camera position determination algorithm from a single 2D face image using the relationship between mouth position information and face region boundary information. Our algorithm first corrects the color bias by a lighting compensation algorithm, then we nonlinearly transformed the image into $YC_bC_r$ color space and use the visible chrominance feature of face in this color space to detect human face region. And then for face candidate, use the nearly reversed relationship information between $C_b\;and\;C_r$ cluster of face feature to detect mouth position. And then we use the geometrical relationship between mouth position information and face region boundary information to determine rotation angles in both x-axis and y-axis of camera position and use the relationship between face region size information and Camera-Face distance information to determine the camera-face distance. Experimental results demonstrate the validity of our algorithm and the correct determination rate is accredited for applying it into practice.

  • PDF

Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm (모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.285-291
    • /
    • 2020
  • In manufacturing, humans are being replaced with robots, but expert skills remain difficult to convert to data, making them difficult to apply to industrial robots. One method is by visual motion recognition, but physical features may be judged differently depending on the image data. This study aimed to improve the accuracy of vision methods for estimating the posture of humans. Three OpenPose vision models were applied: MPII, COCO, and COCO+foot. To identify the effects of face-covering accessories and image preprocessing on the Convolutional Neural Network (CNN) structure, the presence/non-presence of accessories, image size, and filtering were set as the parameters affecting the identification of a human's posture. For each parameter, image data were applied to the three models, and the errors between the actual and predicted values, as well as the percentage correct keypoints (PCK), were calculated. The COCO+foot model showed the lowest sensitivity to all three parameters. A <50% (from 3024×4032 to 1512×2016 pixels) reduction in image size was considered acceptable. Emboss filtering, in combination with MPII, provided the best results (reduced error of <60 pixels).

Probabilistic Head Tracking Based on Cascaded Condensation Filtering (순차적 파티클 필터를 이용한 다중증거기반 얼굴추적)

  • Kim, Hyun-Woo;Kee, Seok-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.262-269
    • /
    • 2010
  • This paper presents a probabilistic head tracking method, mainly applicable to face recognition and human robot interaction, which can robustly track human head against various variations such as pose/scale change, illumination change, and background clutters. Compared to conventional particle filter based approaches, the proposed method can effectively track a human head by regularizing the sample space and sequentially weighting multiple visual cues, in the prediction and observation stages, respectively. Experimental results show the robustness of the proposed method, and it is worthy to be mentioned that some proposed probabilistic framework could be easily applied to other object tracking problems.