Object detection is a challenging field in the visual understanding research area, detecting objects in visual scenes, and the location of such objects. It has recently been applied in various fields such as autonomous driving, image surveillance, and face recognition. In traditional methods of object detection, handcrafted features have been designed for overcoming various visual environments; however, they have a trade-off issue between accuracy and computational efficiency. Deep learning is a revolutionary paradigm in the machine-learning field. In addition, because deep-learning-based methods, particularly convolutional neural networks (CNNs), have outperformed conventional methods in terms of object detection, they have been studied in recent years. In this article, we provide a brief descriptive summary of several recent deep-learning methods for object detection and deep learning architectures. We also compare the performance of these methods and present a research guide of the object detection field.
In this paper, we propose rounding operations on shell meshes, which give a constant or variable radius of rounding directly to sharp edges on a shell mesh. The rolling-ball methods for freeform surface rounding are introduced to devise the algorithms for these operations. Our algorithms consists of three steps as follows: detecting sharp edges, generating a rolling-ball surface contacting with two face groups adjacent to the sharp edges, and then replacing the rounding area of the original mesh with the mesh generated on the rolling-ball surface. In addition, this paper shows their application to the area of stamping die design. These operations enable CAE engineers to directly change the meshes of stamping tools without modification of CAD models for dies and regeneration of their meshes.
Multi-Layer Ceramic Circuit(MLCC) in the face of thousands of fine pitch multi hole is processed. However, the fine pitch multi hole has a size of only a few micrometers. Therefore, in order to curtail the measurement time and reduce error, the image processing measurement method is required. So, we proposed an image processing measurement algorithm which is required to accurately measure the fine pitch multi hole. The proposed algorithm gets image of the fine pitch multi hole, extracts object from the image by morphological process, and extracts the parameters of its position and feature by edge detecting process. In addition, we have used the sub-pixel algorithm to improve accuracy. As a result, the proposed algorithm shows 97% test-retest measurement reliability within 2 ${\mu}m$. We found that the algorithm was wellsuited for measuring the fine pitch multi hole.
감시 시스템에서 많이 사용되는 팬틸트줌(Pan-Tilt-Zoom) 카메라로 객체 검출과 추적을 할 때 카메라를 섬세하게 제어하는 것이 중요하다. 본 논문은 팬틸트줌 카메라를 이용하여 얼굴을 검출 및 추적하는 감시 시스템 구성과 카메라 제어 방법을 제안한다. 얼굴 검출을 위해서 P. Viola가 제안한 Haar-like feature를 이용한 빠른 객체 검출방법을 이용하고 얼굴 추적을 위해서 CAMSHIFT와 AAM을 이용하여 얼굴 추적과 얼굴 특징 정보 추출이 가능한 감시 시스템 구현을 하였다.
The purpose of this paper is to develope the drowsiness-drive perception system which judges drowsiness driving based on drivers' eye region using single vision system. To do this, first, we use the Haar-like feature and AdaBoost learning algorithm for detecting the features of the face region. And we measure the eye blinking frequency and eye closure duration from these feature data. And then, we propose the drowsiness-drive detection algorithm using the eye blinking frequency and eye closure duration. Finally, we have shown the effectiveness and feasibility of the proposed method through some experiments.
International Journal of Computer Science & Network Security
/
제23권12호
/
pp.1-12
/
2023
Ensuring the security of Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) is paramount to safeguarding the reliability and safety of critical infrastructure. This paper addresses the significant threat posed by reconnaissance attacks on SCADA/ICS networks and presents an innovative methodology for enhancing their protection. The proposed approach strategically employs imbalance dataset handling techniques, ensemble methods, and feature engineering to enhance the resilience of SCADA/ICS systems. Experimentation and analysis demonstrate the compelling efficacy of our strategy, as evidenced by excellent model performance characterized by good precision, recall, and a commendably low false negative (FN). The practical utility of our approach is underscored through the evaluation of real-world SCADA/ICS datasets, showcasing superior performance compared to existing methods in a comparative analysis. Moreover, the integration of feature augmentation is revealed to significantly enhance detection capabilities. This research contributes to advancing the security posture of SCADA/ICS environments, addressing a critical imperative in the face of evolving cyber threats.
Suspension bridges are critical to urban transportation, but those in earthquake-prone areas face unique challenges. In the event of a moderate or strong earthquake, conventional linear theory-based approaches for detecting bridge damage become inadequate. This study presents an efficient method for identifying damage in suspension bridges using time history nonlinear inelastic analysis. A practical advanced analysis program is employed to model cable-supported bridges with low computational cost, generating a dataset for four hybrid models: PSO-DT, PSO-RF, PSO-XGB, and PSO-CGB. These models combine decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with particle swarm optimization (PSO) to capture nonlinear correlations between displacement response and damage. Principal component analysis reduces dataset dimensions, and PSO selects the optimal model. A numerical case study of a suspension bridge under simulated earthquake conditions identifies PSO-XGB as the best model for predicting stiffness reduction. The results demonstrate the method's robustness for nonlinear damage detection in suspension bridges under earthquake excitation.
본 논문은 B-스플라인 능동적 윤곽을 차 에지 영상에 적용하여 얼굴을 검출함에 있어, 검출 결과의 정확도를 제고하고 연산량을 감소시키는 방법을 제안한다. 제안 방법은 먼저, 차이 영상의 첨도(kurtosis)를 이용하여 사용자의 움직임량을 추정한다. 이때, 첨도 값에 따라 사용자의 움직임량이 작다고 판단된 경우에는 윤곽선 적합을 실시하지 않으며, 움직임량이 크다고 판단된 경우에만 윤곽선 적합을 실시한다. 그 후, 윤곽선 적합을 위하여 이진화된 차이 영상의 거리변환(distance transform)된 결과와 현재 영상의 에지(edge)를 사용하여 움직임과 관련된 차 에지 영상을 추출하고, 마지막으로 이렇게 추출된 차 에지 영상에 윤곽선 적합을 실시하여 얼굴의 위치를 검출하게 된다. 첨도를 이용하여 사용자의 움직임량을 추정하는 방법은 윤곽선 적합 결과를 안정화시켜주는 동시에 연산량을 절약시켜주며, 현재 영상의 에지와 이진화된 차이 영상의 거리변환을 사용한 움직임 에지 추정 방법은 윤곽선 처짐과 불연속적인 에지 추출의 문제점을 개선시켜준다. 실험을 통해, 제안한 방법이 기존의 윤곽선 처짐이나 에지 끊어짐에 의한 오류를 줄여 주는 동시에, 약 39%의 영상에 대한 윤곽선 적합을 생략시켜주어 연산량을 줄여 줄 수 있음을 확인하였다.
AAM(Active Appearance Model)은 PCA(Principal Component Analysis)를 기반으로 객체의 형태(shape)와 질감(texture) 정보에 대한 통계적 모델을 통해 얼굴의 특징점을 검출하는 알고리즘으로 얼굴인식, 얼굴 모델링, 표정인식과 같은 응용에 널리 사용되고 있다. 하지만, AAM알고리즘은 초기 값에 민감하고 입력영상이 학습 데이터 영상과의 차이가 클 경우에는 검출 에러가 증가되는 문제가 있다. 특히, 입을 다문 입력얼굴 영상의 경우에는 비교적 높은 검출 정확도를 나타내지만, 사용자의 표정에 따라 입을 벌리거나 입의 모양이 변형된 얼굴 입력 영상의 경우에는 입술에 대한 검출 오류가 매우 증가되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 입술 특징점 검출을 통해 정확한 입술 영역을 검출한 후에 이 정보를 이용하여 AAM을 수행함으로써 얼굴 특징점 검출 정확성을 향상시키는 방법을 제안한다. 본 논문에서는 AAM으로 검출한 얼굴 특징점 정보를 기반으로 초기 입술 탐색 영역을 설정하고, 탐색 영역 내에서 Canny 경계 검출 및 히스토그램 프로젝션 방법을 이용하여 입술의 양 끝점을 추출한 후, 입술의 양 끝점을 기반으로 재설정된 탐색영역 내에서 입술의 칼라 정보와 에지 정보를 함께 결합함으로써 입술 검출의 정확도 및 처리속도를 향상시켰다. 실험결과, AAM 알고리즘을 단독으로 사용할 때보다, 제안한 방법을 사용하였을 경우 입술 특징점 검출 RMS(Root Mean Square) 에러가 4.21픽셀만큼 감소하였다.
본 논문에서는 움직임 색상(Moving Color) 개념을 바탕으로 물체의 색상 정보와 움직임 정보의 효율적인 결합을 통해서 추적을 수행하는 MAWUPC(Motion Adaptive Weighted Unmatched Pixel Count)알고리즘을 제안하고, 이를 이용하여 일반적인 배경을 가지는 영상시퀀스에서 얼굴과 손을 추적하는 방법을 제안한다. MAWUPC 알고리즘은 색상 정보와 움직임 정보의 효과적인 결합을 수행하는 움직임 색상 개념에 관한 기존 연구인 AWUPC 알고리즘을 개선한 것으로, 추적하고자 하는 물체의 색상 정보를 이용한 색상 변환(Color Transform)과 움직임 검출을 위한 UPC(Unmatched Pixel Count) 연산, 그리고 움직임 정보를 추출하는 이산 칼만 필터(Discrete Kalman Filter)의 효과적인 결합으로 이루어진다. 제안하는 알고리즘은 일반적으로 물체들의 추적 과정에서 발생되는 가장 큰 문제인 유사한 색상을 가진 추적하고자 하는 물체들간의 겹침 문제와 물체의 추적에서 방해가 되는 복잡한 배경 문제를 해결할 수 있는 장점이 있다. 논문에서는 제안하는 알고리즘이 복잡한 배경 내에서 한 대의 카메라를 사용하여 획득된 컬러 영상을 대상으로 움직임이 있는 얼굴과 손의 추적에서 자주 발생되는 심각한 문제인 얼굴과 손, 손과 손의 겹침 문제를 잘 해결할 수 있다는 것을 실험을 통해 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.