• 제목/요약/키워드: Face Detect

검색결과 380건 처리시간 0.041초

AdaBoost와 ASM을 활용한 얼굴 검출 (Face Detection using AdaBoost and ASM)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.105-108
    • /
    • 2018
  • Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.

SW 분류기를 이용한 실시간 얼굴 검출 방법 (Real-time Face Detection Method using SVM Classifier)

  • 지형근;이경희;반성범
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.529-532
    • /
    • 2003
  • In this paper, we describe new method to detect face in real-time. We use color information, edge information, and binary information to detect candidate regions of eyes from input image, and then extract face region using the detected eye pall. We verify both eye candidate regions and face region using Support Vector Machines(SVM). It is possible to perform fast and reliable face detection because we can protect false detection through these verification processes. From the experimental results, we confirmed the proposed algorithm shows very excellent face detection performance.

  • PDF

Real-Time Face Avatar Creation and Warping Algorithm Using Local Mean Method and Facial Feature Point Detection

  • Lee, Eung-Joo;Wei, Li
    • 한국멀티미디어학회논문지
    • /
    • 제11권6호
    • /
    • pp.777-786
    • /
    • 2008
  • Human face avatar is important information in nowadays, such as describing real people in virtual world. In this paper, we have presented a face avatar creation and warping algorithm by using face feature analysis method, in order to detect face feature, we utilized local mean method based on facial feature appearance and face geometric information. Then detect facial candidates by using it's character in $YC_bC_r$ color space. Meanwhile, we also defined the rules which are based on face geometric information to limit searching range. For analyzing face feature, we used face feature points to describe their feature, and analyzed geometry relationship of these feature points to create the face avatar. Then we have carried out simulation on PC and embed mobile device such as PDA and mobile phone to evaluate efficiency of the proposed algorithm. From the simulation results, we can confirm that our proposed algorithm will have an outstanding performance and it's execution speed can also be acceptable.

  • PDF

시선 응시 점 기반의 관심영역 확장을 통한 원 거리 얼굴 검출 (Far Distance Face Detection from The Interest Areas Expansion based on User Eye-tracking Information)

  • 박희선;홍장표;김상열;장영민;김철수;이민호
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.113-127
    • /
    • 2012
  • 영상처리 기법을 이용한 얼굴검출에 관한 많은 다양한 방법들이 제시되어 왔다. 일반적으로 가장 많이 쓰이는 얼굴 검출 방식은 Viola와 Jones이 제안한 Adaboost 방식이다. 이 방식은 Haar-like feature을 이용하여 얼굴영상을 선행 학습하고, 검출 성능은 학습된 DB에 의존한다. 이는 일정 거리 범위 안의 학습된 얼굴 크기에서는 얼굴 검출을 잘 수행하지만, 카메라에서 객체(얼굴)의 거리가 멀어지면 얼굴 크기가 작아져 기존에 학습한 Haar-like feature로 얼굴 검출을 하지 못하는 경우가 발생한다. 이에 본 논문에서는 생물학 기반의 선택적 주의집중 기반의 Haar-like feature 정보를 이용한 Adaboost 모델과 사용자의 시선 응시 점 정보를 이용하여, 사용자의 관심영역 확장을 통한 원거리 얼굴 검출 모델을 제안한다. 생물학적 기반의 선택적 주의 집중 모델인 돌출맵(Saliency map) 정보를 이용하여 입력 영상에 대하여 얼굴 후보 영역을 검출하고, 검출된 얼굴 후보 영역 중에서 선행 학습된 Haar-like feature 정보로 Adaboost 알고리즘을 이용하여 최종 얼굴 영상을 검출한다. 그리고 사용자의 시선 응시 점 정보는 관심영역을 선택 하는데 이용된다. 피 실험자가, 카메라로부터 멀리 거리 떨어져 얼굴의 크기가 얼굴검출이 힘들더라도 사용자 시선 응시 점 영역을 선형 보간법으로 확대하여 입력영상으로 재사용함으로써 얼굴 검출 성능을 높일 수 있다. 제안된 방법이 기존의 Adaboost 방법보다 얼굴 검출 성능과 수행시간 면에서 우수함을 실험을 통해 확인하였다.

Human Head Mouse System Based on Facial Gesture Recognition

  • Wei, Li;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제10권12호
    • /
    • pp.1591-1600
    • /
    • 2007
  • Camera position information from 2D face image is very important for that make the virtual 3D face model synchronize to the real face at view point, and it is also very important for any other uses such as: human computer interface (face mouth), automatic camera control etc. We present an algorithm to detect human face region and mouth, based on special color features of face and mouth in $YC_bC_r$ color space. The algorithm constructs a mouth feature image based on $C_b\;and\;C_r$ values, and use pattern method to detect the mouth position. And then we use the geometrical relationship between mouth position information and face side boundary information to determine the camera position. Experimental results demonstrate the validity of the proposed algorithm and the Correct Determination Rate is accredited for applying it into practice.

  • PDF

측면 얼굴 검출을 위한 적응적 영역 분할 기법 (The adaptive partition method of skin-tone region for side-view face detection)

  • 송영준;장언동;김관동
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 추계종합학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2003
  • 칼라 영상에서 측면 얼굴 검출시 피부색 검출에 의해 얼굴 후보 영역을 결정하고 템플릿 매칭에 의해 최종 얼굴을 확인하는 방법이 있다. Gang Wei는 측면 얼굴의 좌우 템플릿과 hausdorff 방법에 의한 유사도 측정으로 얼굴 영역을 결정하였다. 이때 측면얼굴은 목 부분이 넓게 퍼져 있는 부분에서 정확도를 높이기 위해 반복 분할 과정을 수행하여 수직 방향으로 3화소 단위로 분할하여 템플릿 매칭을 하였다. 본 논문에서는 측면 얼굴이 좌측 또는 우측 얼굴중의 하나라는 가정 아래, 일단 피부색에 의한 얼굴후보 영역을 수직으로 1/2로 분리한 후 좌측은 좌측후보, 우측은 우측 후보로 가정하여 템플릿 매칭을 하여 좌/우 얼굴을 인식한다. 이는 기존 연구 방식에 비해 적은 분할로 빠른 얼굴 검출을 할 수 있다.

  • PDF

피부색 모델 기반의 효과적인 얼굴 검출 연구 (Efficient Face Detection based on Skin Color Model)

  • 백영현
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.38-43
    • /
    • 2008
  • 피부색 정보는 컬러영상에 포함된 얼굴영역을 검출하는 중요한 요소이다. 피부색 정보로 부터 생성된 통계 피부색 모델을 이용하여 얼굴영역을 검출할 수 있다. 하지만 다른 피부색 부분이 포함되어 있는 컬러영상에서는 일반적인 통계 피부색 모델만으로 정확한 얼굴영역 검출을 할 수 없는 단점을 가진다. 본 논문에서는 다른 피부색 부분이 포함되어 있는 다양한 컬러 영상에서 얼굴영역만을 정확히 검출하기 위한 방법을 제안한다. 제안된 방법은 YCbCr 피부 컬러 모델기반의 피부색 가우시안 분포를 적용하여 얼굴 후보영역 설정 하였고, 영상내의 잡음 부분과 얼굴 영역이외의 부분을 제거하기 위해 수학적 형태학을 적용하였다. 그리고 Haar-like 특성을 이용하여 정확한 얼굴 검출을 수행하였다. 모의실험 결과 제안된 방법이 목이나 팔과 같이 유사한 피부색을 포함한 영상과 다양한 크기의 영상에서도 효과적인 얼굴영역 검출하는 우수함을 보였다.

눈 개폐의 빈도수를 통한 운전자의 졸음판단 분석 (Sleepiness Determination of Driver through the Frequency Analysis of the Eye Opening and Shutting)

  • 공도현;곽근창
    • 한국지능시스템학회논문지
    • /
    • 제26권6호
    • /
    • pp.464-470
    • /
    • 2016
  • 본 논문은 개선된 얼굴검출 알고리즘과 눈의 개폐 빈도수로부터 운전자의 졸음을 판단하는 방법을 제안한다. 이를 위해 기존의 Viola-Jones 알고리즘과 얼굴의 공간적 상관관계를 이용하여 얼굴, 눈, 코, 입을 검출한다. 여기서, 얼굴의 공간적 상관관계는 7가지 특징에 기반한 DFP(Detect Face Part)에 의해 수행된다. Caltect 얼굴 데이터베이스에 실험을 한 결과, 특히 코 영역에 대한 검출률은 기존 Viola-Jones 알고리즘과 비교하여 13.78% 증가된 검출률을 보여주고 있다. 그리고, SVM(Support Vector Machine)과 PERCLOS(Percentage Closure of Eyes)을 사용해 시간에 따른 눈 개폐상태의 누적 값으로 운전자의 졸음 판단을 분석한다. 실험결과 93.28%의 운전자 졸음판단률을 얻어 제안된 방법의 유용성을 확인하였다.

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

SVM을 이용한 얼굴 검출 성능 향상 방법 (Performance Improvement Method of Face Detection Using SVM)

  • 지형근;이경희;정용화
    • 정보처리학회논문지B
    • /
    • 제11B권1호
    • /
    • pp.13-20
    • /
    • 2004
  • 실시간 자동 얼굴 인식 기술에 있어서 정확한 얼굴의 검출은 필수적이며, 얼굴 인식의 성능에 큰 영향을 미치는 매우 중요한 부분이다. 본 논문에서는 컬러 정보, 에지 정보 및 이진화 정보를 복합적으로 이용하여 입력 영상으로부터 두 눈의 영역을 검출하고 이를 이용해 얼굴 후보 영역을 검출한다. 검출된 눈 후보 영역과 얼굴 후보 영역에 대하여 얼굴 검증과 눈 검증용으로 학습된 각각의 SVM을 이용하여 검증한다. 이러한 검증 과정을 거침으로써 잘못된 검출을 막아 빠르고 신뢰성 있는 얼굴 검출이 가능하다. 실험을 통해 본 연구에서 제안한 방법이 99% 이상의 얼굴 검출 성공율을 보임을 확인하였다.