• Title/Summary/Keyword: Fabry-Perot filter

Search Result 67, Processing Time 0.025 seconds

Fiber Grating-based Torsion Sensor with Intensity Measurement (빛의 세기 측정을 이용한 광섬유 격자 비틀림 센서)

  • 박현수;송종섭;한원택;백운출;정영주
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.192-193
    • /
    • 2003
  • 광센서로 이용되는 광섬유 브라고 격자(이하 FBG)는 주변 환경에 대한 반응을 공진파장의 이동으로 나타내기 때문에 이것을 측정하기 위해서는 광 스펙트럼 분석기(OSA)가 반드시 필요하다 그러나 상용화된 광 스펙트럼 분석기는 고가이며 부피가 커서 광섬유 격자가 광센서로 상용화되는데 걸림돌이 되어 왔다. 이런 단점을 보완하기 위해서 많은 연구가 진행되어 왔으며 그 중에서 가장 잘 알려진 기술로는 Mach-Zehnder Inteferometer(MZI) 같은 간섭계를 이용한 방법과 Fabry-Perot (FP) filter, acousto-optic filter, FBG-based filters 등과 같은 변조기를 사용하여 광신호를 전기 신호로 바꿔 실시간으로 측정하는 방법들이 있다. (중략)

  • PDF

An Intensity Based Self-referencing Fiber Optic Sensor Using Tunable Fabry-Perot Filter and FBG (가변 페브리-페로 필터와 FBG를 이용한 광세기 기반 자기기준 광섬유 센서)

  • Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.146-152
    • /
    • 2013
  • In this paper, we have proposed and experimentally demonstrated an intensity-based self-referencing fiber optic sensor. The proposed fiber optic sensor consists of a broadband light source (BLS), fiber Bragg grating (FBG), tunable Fabry-Perot (F-P) filter, and LabVIEW program. We define the measurement parameter (X) and the calibration parameter (${\beta}$) to determine the transfer function(H) of the self-referencing fiber optic sensor, and the validity of the theoretical analysis is confirmed by experiments. The self-referencing characteristic for the proposed system has been validated by showing that the measurement parameter (X) is invariant for BLS optical power attenuations of 0 dB, 3 dB, and 6 dB. Also, the measured result is irrelevant to the FBGs with different characteristics. This means that the proposed fiber optic sensor offers the flexibility for determining the FBGs needed for implementation. Experimental results for the proposed fiber optic sensor are in good agreement with a theoretical analysis for BLS optical power attenuations and for three FBG pairs with different characteristics. So, the proposed fiber optic sensor has several benefits, including the self-referencing characteristic and the flexibility to determine the FBGs.

Optical frequency domain reflectometry based on Wavelength swept mode locked fiber laser (Wavelength Swept 모드 록킹된 광섬유 레이저를 이용한 광주파수 영역에서 반사계)

  • 오명숙;박희수;김병윤
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.204-205
    • /
    • 2003
  • We demonstrate a novel OFDR system with compactness and short measurement time based on the use of a wavelength-swept mode-locked fiber laser. The optical source uses an intra-cavity tunable Fabry-Perot filter as a tuning element. The fiber laser sweeps 20 nm in less than 10 ms. Spatial resolution of 100 fm and total measurement range of several centimeters are demonstrate

  • PDF

Micro-Optical Bench Packaging for Thermo-Optic Tunable Filter (미세광학벤치를 이용한 열 가변 필터의 패키징)

  • 황병철;박헌용;이승걸;오범환;이일항;최두선;박세근
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1097-1100
    • /
    • 2003
  • Tunable thermo-optic filter for WDM system was designed and fabricated. The basic structure of the filter was a Fabry-Perot resonator and the center cavity layer was poly-Si. Quardraple layers of low and high refractive index materials were used as DBR mirrors. Tuning and transmission efficiencies was measured and compared with the simulation results. Tuning range of 9.4 nm can be obtained by 64.7$^{\circ}C$ temperature changes and tuning efficiency was 0.144nm/K. The filter is to be assembled onto the micro optical bench with fiber optical path.

  • PDF

Linear interrogation of fiber Bragg grating sensor array using a Etalon filter (에탈론 필터를 이용한 광섬유격자 센서의 선형 복조)

  • Jin, Zhong-Xie;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.74-77
    • /
    • 2006
  • A scanned Fabry-Perot(F-P) filter and a Multi-Channel Wavelength Locker(MCWL) were used to interrogate fiber Bragg grating sensor array. When the F-P filter scans over the MCWL which works as a multi-reference the temporal peaks profiles correspond to the locking wavelengths. To solve the linearity, stability, and accuracy problems caused by the nonlinear response of F-P filter, a polynomial fitting algerian was used to calculate the relationship between the peak locations and the wavelengths in all the scanning range. Then from the reflected peaks locations and the best fitting line, the Bragg wavelengths can be obtained. The measurement linearity was greatly enhanced with wavelength resolution of about 4 pm in 10Hz scanning frequency.

  • PDF

Resonance Fiber Bragg Grating Sensor system based on Fourier Domain Mode-locking Laser (분광 영역 모드록킹 레이저를 이용한 공진형 광섬유 격자 센서)

  • Choi, Byeong Kwon;Jeon, Min Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.211-216
    • /
    • 2012
  • We report a resonance fiber Bragg sensor interrogation based on a Fourier domain mode-locking (FDML) laser. The FDML laser is constructed based on a conventional ring laser cavity configuration with fiber Fabry-Perot tunable filter (FFP-TF). There are two sensor parts which are composed with two FBGs inside the laser cavity. Each sensor part provides a separate laser cavity for the FDML laser. The resonance frequencies of the laser cavities are 46.687 kHz and 44.340 kHz, respectively. We applied a static and a dynamic strain on the FBG sensor system. The slope coefficients of the measured relative wavelength shift and relative time interval from the static strain are found to be $0.61pm/{\mu}{\epsilon}$ and $0.8ns/{\mu}{\epsilon}$, respectively.

Distributed Fiber-Optic Temperature Sensor Network for Protection of Electric Power Systems (전력설비 보호를 위한 분배형 광섬유 온도센서)

  • Park, Hyoung-Jun;Lee, June-Ho;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.64-71
    • /
    • 2006
  • We developed a fiber-optic temperature sensor system, with 10 fiber Bragg gratings, for abnormal high-temperature monitoring in power systems. We used Gaussian line-fitting algorithm to compensate the spectrum distortion in the wavelength-scanned Farby-Perot filter demodulation scheme. Compared with highest-peak-detection method, the proposed algorithm substantially reduced measurement errors. The overall measurement error was less than 1[%] compared with the reference thermocouple and the linearity error was 0.37[%].

Study on the High Speed WIM(Weigh-in-Motion) Measurement with Optical Fiber Sensor System (광섬유센서를 이용한 고속주행 트럭의 축중 측정에 관한 연구)

  • 조성규;김기수;배병우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.451-460
    • /
    • 2003
  • In this paper, high speed fiber optic sensor weigh-in motion (WIM) system is proposed. Bragg gratings which have several advantages such as good reproducibility and good multiplicity compare to other optical fiber sensors are used for the system. Fabry-Perot filter for the signal process, which cannot be used in the high speed measurement because of the limitation in fast operation of PZT, is excluded. A new signal processing system which employs bandwidth filter is proposed and bridge type new sensor package design is also proposed. Design of the mold supporter is modified to round shape and then supporting points do not change. The data from the fiber sensors show identical and linear behavior to the axle weight. The proposed fiber optic WIM system is tested in the laboratory and experimented with actual trucks. The new concept of calibration is introduced and calculated by the experiments. The calibrated weight data show good approximations to real axial weights regardless the velocities of the truck.

  • PDF

Study of Optical Fiber Sensor Systems for the Simultaneous Monitoring of Fracture and Strain in Composite Laminates (복합적층판의 변형파손 동시감지를 위한 광섬유 센서 시스템에 관한 연구)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • To perform the realtime strain and fracture monitoring of the smart composite structures, two optical fiber sensor systems are proposed. The two types of the coherent sources were used for fracture signal detection - EDFA with FBG and EDFA with Fabry-Perot filter. These sources were coupled to EFPI sensors imbedded in composite specimens. To understand the characteristics of matrix crack signals, at first, we performed tensile tests using surface attached PZT sensors by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as short time Fourier transform (STFT) and wavelet transform (WT) for the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes. And, from the test of tensile load monitoring using optical fiber sensor systems, measured strain agreed with the value of electric strain gage and the fracture detection system could detect the moment of damage with high sensitivity to recognize the onset of micro-crack fracture signal.

An Ultra-narrow Bandwidth Filter for Daytime Wind Measurement of Direct Detection Rayleigh Lidar

  • Han, Fei;Liu, Hengjia;Sun, Dongsong;Han, Yuli;Zhou, Anran;Zhang, Nannan;Chu, Jiaqi;Zheng, Jun;Jiang, Shan;Wang, Yuanzu
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.69-80
    • /
    • 2020
  • A Rayleigh Lidar used for wind detection works by transmitting laser pulses to the atmosphere and receiving backscattering signals from molecules. Because of the weak backscattering signals, a lidar usually uses a high sensitivity photomultiplier as detector and photon counting technology for signal collection. The capturing of returned extremely weak backscattering signals requires the lidar to work on dark background with a long time accumulation to get high signal-to-noise ratio (SNR). Because of the strong solar background during the day, the SNR of lidar during daytime is much lower than that during nighttime, the altitude and accuracy of detection are also restricted greatly. Therefore this article describes an ultra-narrow bandwidth filter (UNBF) that has been developed on 354.7 nm wavelength of laser. The UNBF is used for suppressing the strong solar background that degrades the performance of Rayleigh wind lidar during daytime. The optical structure of UNBF consists of an interference filter (IF), a low resolution Fabry-Perot interferometer (FPI) and a high resolution FPI. The parameters of each optical component of the UNBF are presented in this article. The transmission curve of the aligned UNBF is measured with a tunable laser. Contrasting the result of with-UNBF and with-IF shows that the solar background received by a Licel transient recorder decreases by 50~100 times and that the SNR with-UNBF was improved by 3 times in the altitude range (35 km to 40 km) compared to with-IF at 10:26 to 10:38 on August 29, 2018. By the SNR comparison at four different times of one day, the ratio-values are larger than 1 over the altitude range (25~50 km) in general, the results illustrate that the SNR with-UNBF is better than that with-IF for Rayleigh Lidar during daytime and they demonstrate the effective improvements of solar background restriction of UNBF.