• Title/Summary/Keyword: Fabrication tolerance

Search Result 103, Processing Time 0.027 seconds

Tolerance Allocation Method for IR Optics Fabrication Using Monte-Carlo Simulation Based on Measured Reflective Eccentricity (편심측정 결과가 반영된 몬테카를로 시뮬레이션을 이용한 적외선 광학계 조립정렬 공차 할당 기법)

  • Yoo, Jae-Eun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • In this paper, a tolerance allocation method using Monte-Carlo simulation with measured reflective eccentricity for high-sensitive IR optics is proposed. During optics fabrication and alignment, reflective eccentricity was measured using an optical centration measurement instrument. A Monte-Carlo simulation was performed using measured eccentricity data, and it gives statistical estimated performance of the optics after fabrication. The validity of the proposed tolerance allocation method was verified comparing the estimated MTF result with the measured MTF result of the fabricated optics.

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

Definition of Digital Engineering Models for DfMA of Prefabricated Bridges (프리팹 교량의 DfMA를 위한 디지털엔지니어링 모델 정의)

  • Duy-Cuong, Nguyen;Roh, Gi-Tae;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • Prefabricated bridges require strict management of tolerance during fabrication and assembly. In this paper, digital engineering models for prefabricated bridge components such as deck, girder, pier, abutment are suggested to support information delivery through the life-cycle of the bridge. Rule-based modeling is used to define geometry of the members considering variable dimensions due to fabrication and assembly error. DfMA(design for manufacturing and assembly) provides the rules for ease of fabrication and assembly. The digital engineering model consists of geometry, constraints and corresponding parameters for each phase. Alignment and control points are defined to manage tolerances of the prefabricated bridge during fabrication and assembly. Quality control by digital measurement of dimensions was also considered in the model definition. A pilot bridge was defined virtually to validate the suggested digital engineering models. The digital engineering models for DfMA showed excellent potential to realize prefabricated bridges.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Optimization of Grating Structures in Complex-Coupled MQW DFB Lasers with Absorptive Gratings (흡수 회절격자를 가지는 복소결합 다중양자우물 DFB 레이저의 회절격자 구조의 최적화)

  • Cho, Sung-Chan;Lee, Dong-Chan;Kim, Boo-Gyoun
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.80-91
    • /
    • 1999
  • We present various optimal grating structures which give the low threshold gain, good modulation characteristics, small effective linewidth enhancement factor, and large fabrication tolerance in complex-coupled MQW DFB lasers with absorptive gratings. To obtain these, we calculate the complex coupling coefficients using the extended additional layer method and the threshold gain including the modal loss in the absorptive grating region for rectangular and trapezoidal gratings. Based on the comparison of the results for various possible absorptive grating structures, the design guidelines are presented to obtain the low threshold gain or large fabrication tolerance. Among the grating structures studied, the double grating structure consisting of the absorptive grating on the index grating has the largest fabrication tolerance for the threshold gain and the coupling strength. The fabrication tolerance for the coupling ratio is very large for all the grating structures studied.

  • PDF

Design of optical power splitters and couplers composed of deeply etched multimode interference section (깊이 식각된 다중모드 간섭 영역으로 구성된 광전력 분배기 및 결합기의 설계)

  • 김정욱;정영철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.62-72
    • /
    • 1997
  • The optical power splitter/couplers based on MMI(multimode interference) in GaAs/AlGaAs are studied. We presetn a design of optical power splitter/couplers, which have deeply etched multimode waveguide. The properties and fabrication tolerance on the etching depth, multimode waveguide width are simulatedusing a FD-BPM (finite difference beam propgation method). Proposed 1*N optical of designed device is 0.7dB smaller than the optical power splitter with a shallowly etched MMI section. For 0.5dB excess loss, the predicted fabrication tolerance is 0.6.mu.m on the multimode waveguide width of the 14 optical power splitter with a deeply etched MMI section. Also excess loss and uniformity of poposed 32*32 optical power coupler are below 0.3dB. The excess loss of proposed 32*32 optical power coupler is 2dB smaller than the optical power coupler with a shallowly etched MMI section. It is shown that the optical power splitters/couplers with a deeply etched mMI section have low loss, good uniformity, and improved fabriction tolerance.

  • PDF

Relationship between Surface Sag Error and Optical Power of Progressive Addition Lens

  • Liu, Zhiying;Li, Dan
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.538-543
    • /
    • 2017
  • Progressive addition lenses (PAL) have very wide application in the modern glasses market. The unique progressive surface can make a lens have progressive refractive power, which can meet the human eye's different needs for distance-vision and near-vision. According to the national glasses fabrication standard, the difference between actual optical power after fabrication and nominal design value should be less than 0.1D over the lens effective area. The optical power distribution of PAL is determined directly by the surface. Consequently, the surface processing accuracy requirement is proposed. Beginning from the surface expressions of progressive addition lenses, the relationship equations between the surface sag and optical power distribution are derived. They are demonstrated through tolerance analysis and test of an example progressive addition lens with addition of 2.09D (5.46D-7.55D). The example addition surface is fabricated under given accuracy by a single-point diamond ultra-precision machine. The optical power of the PAL example is tested with a focal-meter after fabrication. The optical power addition difference between test result and design nominal value is 0.09D, which is less than 0.1D. The derived relationship between the surface error and optical power is verified from the PAL example simulation and test result. It can provide theoretical tolerance analysis proof for the PAL surface fabricating process.

Optimal Management of Fabrication and Assembly Tolerance of Optical Systems by Analyzing Its Influence on Zernike Coefficients (쩨르니케 계수의 민감도에 바탕을 둔 광부품 제작 및 조립 공차의 최적 관리)

  • Kim, Hyunsook;Kim, Jin Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • A new method is proposed for optimal management of the fabrication and assembly tolerance of optical systems. The practical utility of the method is shown by applying it to a wide-angle anamorphic IR optical system. In this method the wavefront error of an optical system is expressed in terms of Zernike polynomials, and the sensitivity of the expansion coefficients to the variation of design parameters is analyzed. Based on this sensitivity analysis, the optimal tolerances of the fabrication parameters are determined and the best compensators for the assembly process are selected. By using this method, one can accurately predict with good confidence the best possible performance of a completed optical system in practice.

Investigation on Fabrication Process and Tolerance of Resistance Body with A Uniform Thickness Shape on Organic Substrate for Application of Embedded Resistor (Embedded Resistor 적용을 위한 Organic 기판 위에 균일한 두께의 형상을 갖는 저항체의 제조공정과 편차에 대한 조사)

  • Park, Hwa-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.72-77
    • /
    • 2008
  • This paper investgated on fabrication process and tolerance of resistance body with a uniform thickness formed by the process of cavity type on organic substrate for application of embedded resistor. To improve the tolerance of resistance value according to a position of PCB cause by conventional screen printing, we introduced the process of cavity type from organic substrate. A resistor with a desired shape and volume was precisely formed by the process of cavity using a resistor paste and screen printing. This method can increase PCB's productivity by shortening its production time because process conditions of a screen prining device can be set quickly without any affection on its position accuracy.

Fabrication of Micromachined Ceramic Thin-Film Pressure Sensors for High Overpressure Tolerance

  • Chung, Gwiy-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.59-63
    • /
    • 2002
  • This paper reports on the fabrication process and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain-gauges for harsh environment applications. The Ta-N thin-film strain-gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragms with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.21 ~ 1.097 mV/V.kgf/$\textrm{cm}^2$ in temperature ranges of 25~ $200^{\circ}C$ and a maximum non-linearity is 0.43 %FS.

  • PDF