• Title/Summary/Keyword: Fabrication System

Search Result 2,286, Processing Time 0.032 seconds

Bacteriorhodopsin/Flavin Complex LB Films-Based Artificial Photoreceptor for Color Recognition (Bacteriorhodopsin과 flavin 복합 LB막을 이용한 색채인식기능의 인공감광소자)

  • Choi, Hyun-Goo;Jung, Woo-Chul;Min, Jun-Hong;Lee, Won-Hong;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.643-650
    • /
    • 1999
  • An artificial photoreceptor composed of bacteriorhodopsin(bR)/flavin complex Langmuir-Blodgett(LB) films was developed by mimicking the human visual system. bR and flavin molecules were deposited onto solid substrate by LB technique, and the deposition of two molecules was proved by UV/VIS absorption spectroscopy and atomic force microscopy(AFM). Based on AFM images and photocurrent generation from the LB films, the optimal conditions for device fabrication were determined. With a series of light illuminations, the generated photocurrent could be detected, and the response characteristics of two molecules could be clearly distinguished from each other. According to the obtained signal shapes, three distinctive regions could be found in the obtained action spectrum. Using a correlation between the photocurrent generation and the wavelength of the input light, it was possible to organize the basic rules to interpret the wavelength of the input light. It is concluded that the proposed artificial photoreceptor would e applicable to the bioelectronic device for color recognition.

  • PDF

Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution (글리콜 용매 기반 저온 치환 은도금법으로 형성시킨 동박막 상 극박 두께 Ag 도금층)

  • Kim, Ji Hwan;Cho, Young Hak;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • To investigate the plating properties of a diethylene glycol-based Ag immersion plating solution containing citric acid, silver immersion plating was performed in a range from room temperature to $50^{\circ}C$ using sputtered Cu specimens. The used Cu specimens possessed surface structure with large numbers of pinholes which were created with over-acid etching. The Ag immersion plating performed at $40^{\circ}C$ exhibited that the pinholes and copper surface were completely filled with Ag just after 5 min mainly due to galvanic displacement reaction, indicating the best plating properties. Subsequently, the surface morphology of Ag-coated Cu became rougher as the plating time increased to 30 min because of the deposition of silver nanoparticles created by chemical reduction in the solution. The specimen that its overall surface was covered with silver indicated the start of oxidation at temperature higher than around $50^{\circ}C$ in air as compared with pure Cu, indicating enhanced anti-oxidation properties.

Modified Similitude Law for Pseudodynamic Test on Small-scale Steel Models (철골 축소모헝의 유사동적실험을 위한 수정된 상사법칙)

  • Kim, Nam-Sik;Kwak, Young-Hak;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.49-57
    • /
    • 2003
  • Although there are several experimental techniques to evaluate the seismic behavior and performance of civil structures, small-scale models in mast of physical tests, instead of prototypes or large-scale models, would be used due to a limitation on capacities of testing equipments. However, the inelastic seismic response prediction of small-scale models has some discrepancies inherently because the similitude law is generally derived in the elastic range. Thus, a special attention is required to regard the seismic behavior of small-scale models as one of prototypes. In this paper, differences between prototypes and small-scale models pseudodynamically tested on steel column specimens are investigated and an alternative to minimize them is suggested. In general, small-scale models could have the distorted stiffness induced from some experimental errors on test setup, steel fabrication and so on. Therefore, a modified similitude law considering both a scale factor for length and a stiffness ratio of small-scale model to prototype is proposed. Using the modified similitude law to compensate experimental errors, the pseudodynamic test results from modified small-scale model are much improved as compared with the results of prototype. According to the pseudodynamic test results of small-scale steel models, it can be concluded that the modified similitude law proposed could be effective in simulating the seismic response of prototype structures.

Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

  • Park, Seung-Hyun;Shin, Jung-Ah;Park, Hyun-Hee;Yi, Gwang-Yong;Chung, Kwang-Jae;Park, Hae-Dong;Kim, Kab-Bae;Lee, In-Seop
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Objectives: The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods: A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results: A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion: Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

Calculation and measurement of optical coupling coefficient for bi-directional tancceiver module (양방향 송수신모듈 제작을 위한 광결합계수의 계산 및 측정)

  • Kim, J. D.;Choi, J. S.;Lee, S. H.;Cho, H. S.;Kim, J. S.;Kang, S. G.;Lee, H. T.;Hwang, N.;Joo, G. C.;Song, M. K.
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.500-506
    • /
    • 1999
  • We designed and fabricated a bidirectional optical transceiver module for low cost access network. An integrated chip forming a pin-PD on an 1.3 urn FP-LD was assembled by flip-chip bonding on a Si optical bench, a single mode fiber with an angled end facet was aligned passively with the integrated chip on V-groove of Si-optical bench. Gaussian beam theory was applied to evaluate the coupling coefficients as a function of some parameters such as alignment distance, angle of fiber end facet, vertical alignment error. The theory is also used to search the bottle-neck between transmittance and receiving coupling efficiency in the bi-directional optical system. Tn this paper, we confirmed that reduction of coupling efficiency by the vertical alignment error between laser beam and fiber core axis can be compensated by controlling the fiber facet angle. In the fabrication of sub-module, a'||'&'||' we made such that the fiber facet have a corn shape with an angled facet only core part, the reflection of transmitted laser beam from the fiber facet could be minimized below -35 dE in alignment distance of 2: 30 /J.m. In the same condition, transmitted output power of -12.1 dEm and responsivity of 0.2. AIW were obtained.

  • PDF

Fabrication of Gel-type Electrolyte for the Development of Reference Electrode for Sea Water and Application to Measuring Equipment for Total Residual Oxidants (해수용 기준전극 개발을 위한 겔 타입 내부전해질 제조 및 잔류염소 측정장치에의 적용)

  • Kim, Yu-Jin;Lee, Hae-Don;Kim, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.153-157
    • /
    • 2017
  • Gel type internal electrolytes were synthesized by varying hydroxyethyl-cellulose (HEC) amounts and their durability and conductivity were measured. The ionic conductivity decreased as the content of HEC increased thus the internal electrolyte containing more than 12% of HEC could not be used as a reference electrode. Based on durability test results, as the HEC amount decreased carrier density resulting in increasing of the amount of KCl coming out of the porous membrane. Therefore in order to use long time at ballast water treatment systems, we selected 10% HEC for gel type internal electrolyte. The resolution test for total residual oxidants (TRO) was carried out using the TRO sensor and the gel type reference electrode made of 10% HEC. A 50 mV potential was applied to the TRO sensor for 30 sec and changes in the current were measured. It was confirmed that the TRO concentrations ranging from 0 to 15 mg/L could be separated at salinity conditions of 0.2~30 PSU. The results indicated that the TRO concentration at sea water and at fresh water was successfully measured by the TRO sensor constructed with the reference electrode using gel-type internal electrolyte of HEC.

Damage Measurement for Molybdenum Thin Film Using Reflection-Type Digital Holography (반사형 디지털 홀로그래피를 이용한 Molybdenum 박막의 손상 측정)

  • Kim, Kyeong-Suk;Jung, Hyun-Il;Shin, Ju-Yeop;Ma, Hye-Joon;Kwon, Ik-Hwan;Yang, Seung-Pill;Hong, Chung-Ki;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2015
  • In the fabrication of electronic circuits used in electronic products, molybdenum thin films are deposited on semiconductors to prevent oxidation. During the deposition, the presence of a particle or dust at the interface between the thin film and substrate causes the decrease of adhesion, performance, and life cycle. In this study, a damage measurement targeting two kinds of glass substrate, with and without particles, was performed in order to measure the change in the molybdenum thin film deposition area in the presence of a particle. Clean and dirty molybdenum thin film specimens were fabricated and directly deposited on a substrate using the sputtering method, and a reflection-type digital holographic interferometer was configured for measuring the damage. Reflection-type digital holography has several advantages; e.g., the configuration of the interferometer is simple, the measurement range can be varied depending on the magnification of a microscopic lens, and the measuring time is short. The results confirm that reflection-type digital holography is useful for the measurement of the damage and defects of thin films.

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF

Development of LTCC Materials for RF Module (RF 모듈용 LTCC 소재 개발)

  • 김용철;이경호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2003
  • In this study, new LTCC materials of $ZnWO_4$-LiF system were developed for the application to RF Module fabrication. Pure $ZnWO_4$ must be sintered above $1050^{\circ}C$ in order to obtain up to 98% of full density. The measured dielectric constant ($\epsilon_r$)quality factor ($Q{\times}f0$), and temperature coefficient of resonant frequency ($\tau_f$ were 15.5, 74000 GHz, and $-70ppm^{\circ}C$, respectively. LiF addition resulted in a liquid phase formation at 81$0^{\circ}C$ due to interaction between ZnWO$_4$ and LiF. Therefore, ZnWO$_4$ with 0.5∼1.5 wt% LiF could be densified at $850^{\circ}C$. In the given LiF addition range, the sintering shrinkage increased with increasing LiF content. Addition of LiF slightly lowered the dielectric constant from 15.5 to 14.2∼15 due to lower dielectric constant of LiF. Qxfo value decreased with increasing LiF content. This can be explained in terms of the interaction between LiF and $ZnWO_4$, and inhomogeneity of grain structure.

  • PDF

Strength Development of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash under Different Compaction Methods including Small Scale Roller Vibrator (플라이애쉬와 리젝트애쉬를 활용한 섬유보강 빈배합 콘크리트의 강도 특성 및 롤러다짐을 활용한 현장적용 실험)

  • Kim, Seung-Won;Jang, Young-Jae;Park, Young-Hwan;Park, Cheol-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.543-551
    • /
    • 2012
  • Road pavements in Korea generally show shorter service life than the predicted one. There are many reasons for this phenomenon including increased traffic load and other attacks from exposure conditions. In order to extend a service life and upgrade the pavement, a new multi-functional composite pavement system is being developed in Korea. This study is to investigate the performances of fiber-reinforced lean concrete for pavement base. This study considered mineral admixtures of fly ash and reject ash. The reject ash is defined as ash that does not meet the specifications for fly ash so that it cannot be used as a supplemental material for cement replacement. Due to the inherent property of lean concrete, compaction during the fabrication of specimens is a key factor. Therefore, this study suggests an appropriate compaction method. From the test results, the compressive strengths of the concrete satisfied the required limit of 5 MPa at 7 days. When a compaction roller was used to mimic actual field conditions, the strength development seemed to be influenced by the compaction energy rather than hydration of cement itself.