• Title/Summary/Keyword: Fabrication Management

Search Result 216, Processing Time 0.025 seconds

The Dentists' View of Dental Hygienist Duties in Korea

  • Han, Yang-Keum;Yu, Ji-Su;Kim, Seung-Hee;Yang, Jin-Young;Bae, Soo-Myoung;Hwang, Soo-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.1
    • /
    • pp.34-43
    • /
    • 2020
  • Background: The number and curriculum of dental hygienists in Korea have dramatically increased. Controversies have since resulted from insufficient job descriptions of the work performed by a dental hygienist. A dentist's perception was examined to legally reflect the actual work of dental hygienists. Methods: Four hundred and nineteen dentists were surveyed about the duties of a dental hygienist. Their views on the career and availability of each job were examined. The duties of the dental hygienist include 13 items in dental treatment preparation, 14 items of radiography, 21 items of preventive dentistry, 6 items of periodontal treatment, 12 items of oral medicine, 12 items of conservative dentistry, 8 items of prosthetics, 10 items of orthodontics, 7 items of oral and maxillofacial surgery, 6 items of implantation, 6 items of impression taking and model fabrication, 5 items of anesthesia and injection, 11 items of management and administrative, and 3 items of self-development. Results: Most of the duties were doable by a dental hygienist. Many dentists reported that managing implants, oral hygiene of special patients, some duties in oral medicine, teeth brightening, making temporary crowns, making individual trays, selecting shades, ligaturing, and precision impressions need ≥3 years of experience. Duties perceived by dentists not to be performed by dental hygienists were reading radiographs (55.4%), suture and stitch out (48.0%), intramuscular injection (36.0%), root planning (27.2%), cementation and removal of prostheses (23.2%), and examining pulp vitality (22.0%). Conclusion: Current laws are to be revised to include, the care provided by dental hygienists and under a physician's supervision. Flexibility is also needed to cope with rapidly changing dental technology.

A Study on Material Analysis with Usability for Virtual Costume Hanbok in Digital Fashion Show (디지털 패션쇼를 위한 가상 한복 재질분석 및 사용성 연구)

  • Ahn, Duckki;Chung, JeanHun
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.351-358
    • /
    • 2017
  • This study seeks to propose the virtual costume's pipeline production in digital fashion show which is based on the unique characteristic combining computer graphic technology and traditional fashion design. This study analyzed the fabric materials based on Korean traditional costume to create a virtual Hanbok for the digital fashion show, and conducted the group of professional's satisfaction statistics through the experiment to verify the realistic usability. The contents of primary process of producing virtual Korean costume is analyzed by summarizing the thickness, weight, and color as the three essential fabric properties required for virtual Hanbok. In addition, virtual costumes are compared with real Hanbok based on the usability survey to evaluate the positive research result by forty graphic experts. The purpose of this study is to present the guideline of essential material analysis of the fabrication to digital fashion show in the virtual clothing production.

A Study on the Fabrication of Multi-Walled Nanotubes (MWCNT) Based Thin Film and Chemical Sensor Operation Characteristics (Multi-Walled Carbon Nanotubes (MWCNT) 인쇄박막의 제작과 화학센서 동작 특성에 관한 연구)

  • Noh, Jae Ha;Choi, Junseck;Ko, Dongwan;Seo, Joonyoung;Lee, Sangtae;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.181-185
    • /
    • 2020
  • Hazardous and noxious substance (HNS) detection sensors were fabricated using multi-walled carbon nanotubes (MWCNTs) and various binder materials for ion batteries. To obtain uniformly printed films, the printing precision according to the substrate cleaning method was monitored, and the printing paste mixing ratio was investigated. Binders were prepared using styrene butadiene rubber + carboxymethyl cellulose (SBR+CMC), polyvinylidene fluoride + n-methyl-2-pyrrolidene (PVDF+NMP), and mixed with MWCNTs. The surface morphology of the printed films was examined using an optical microscope and a scanning electron microscope, and their electrical properties are investigated using an I-V sourcemeter. Finally, sensing properties of MWCNT printed films were measured according to changes in the concentration of the chemical under the various applied voltages. In conclusion, the MWCNT printed films made of (SBR+CMC) were found to be feasible for application to the detection of hazardous and noxious chemicals spilled in seawater.

Design, fabrication and performance characteristics of a 50kHz tonpilz type transducer with a half-wavelength diameter (반파장 직경을 갖는 50kHz tonpilz형 음향 변환기의 설계, 제작 및 성능특성)

  • Lee, Dae-Jae;Lee, Won-Sub
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In a split beam echo sounder, the transducer design needs to have minimal side lobes because the angular position and level of the side lobes establishes the usable signal level and phase angle limits for determining target strength. In order to suppress effectively the generation of unwanted side lobes in the directivity pattern of split beam transducer, the spacing and size of the transducer elements need to be controlled less than half of a wavelength. With this purpose, a 50 kHz tonpilz type transducer with a half-wavelength diameter in relation to the development of a split beam transducer was designed using the equivalent circuit model, and the underwater performance characteristics were measured and analyzed. From the in-air and in-water impedance responses, the measured value of the electro-acoustic conversion efficiency for the designed transducer was 51.6%. A maximum transmitting voltage response (TVR) value of 172.25dB re $1{\mu}Pa/V$ at 1m was achieved at 52.92kHz with a specially designed matching network and the quality factor was 10.3 with the transmitting bandwidth of 5.14kHz. A maximum receiving sensitivity (SRT) of -183.57dB re $1V/{\mu}Pa$ was measured at 51.45kHz and the receiving bandwidth at -3dB was 1.71kHz. These results suggest that the designed tonpilz type transducer can be effectively used in the development of a split beam transducer for a 50kHz fish sizing echo sounder.

Evaluating Importance of Defects through Defect Dispute Case Study in Apartment Buildings (하자분쟁사례를 통한 공동주택 하자 중요도 평가에 관한 연구)

  • Lee, Sang-Hoon;Kim, Jae-Jun;Lee, Sang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.56-64
    • /
    • 2019
  • Various defects that occur in the maintenance stage are connected to all kinds of wasted resources and economic losses as additional investments are made. Residents are harmed temporally, materially, and psychologically, and businesses suffer not only monetary losses but also reduced credit ratings. The aim of this study was to increase the efficiency of quality management and minimize defect disputes by estimating the importance of the defect type considering the defect frequency and severity in apartment buildings. For this, 7,548 defect items for 48 apartment buildings were examined. The analysis confirmed that defects are concentrated on RC, finishing and MEP work. In addition, defects with high importance are identified as broken, incorrect installation, missing tasks, and water problems. In addition, the exterior wall/roof, the Internal wall, ceiling, and floor, which are constructed in the field, are more important than the furniture and MEP equipment installed in the field.

A Study of the Development of Gardening Products Converged with Cultural Contents of Kongjwi Patjwi (콩쥐 팥쥐전의 문화콘텐츠를 융합한 가드닝 제품 개발 연구)

  • Choi, Jung-Hwa;Lee, Myung-Ah
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.501-508
    • /
    • 2019
  • Today, home gardening is in the spotlight. Therefore, the necessity of developing a new type of gardening product was raised according to the consumer's desires. This study, the contents were developed using sparrows, a helper who helped the bean rat's grain-cracking task among the characters of 'kongjwi patjwi'. The cultural contents convergence product is a lid production that is used at the end of the plant support. The fabrication method was designed using UG NX program after design research, and after printing by 3D polyjet method, mold was made and cast into silicon and resin. Through product manufacturing, we could confirm the public's interest in the possibility of new products and creativity. In the future, it is expected that the development of products incorporating cultural contents through various cultural archetypes will be activated, contributing to the enhancement of economic added value and national brand value.

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Fabrication and Evaluation of a Total Organic Carbon Analyzer Using Photocatalysis

  • Do Yeon Lee;Jeong Hee Shin;Jong-Hoo Paik
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.140-146
    • /
    • 2023
  • Water quality is crucial for human health and the environment. Accurate measurement of the quantity of organic carbon in water is essential for water quality evaluation, identification of water pollution sources, and appropriate implementation of water treatment measures. Total organic carbon (TOC) analysis is an important tool for this purpose. Although other methods, such as chemical oxygen demand (COD) and biochemical oxygen demand (BOD) are also used to measure organic carbon in water, they have limitations that make TOC analysis a more favorable option in certain situations. For example, COD requires the use of toxic chemicals, and BOD is time-consuming and can produce inconsistent and unreliable results. In contrast, TOC analysis is rapid and reliable, providing accurate measurements of organic carbon content in water. However, common methods for TOC analysis can be complex and energy-intensive because of the use of high-temperature heaters for liquid-to-gas phase transitions and the use of acid, which present safety risks. This study focuses on a TOC analysis method using TiO2 photocatalysis, which has several advantages over conventional TOC analysis methods, including its low cost and easy maintenance. For TiO2, rutile and anatase powders are mixed with an inorganic binder and spray-coated onto a glass fiber substrate. The TiO2 powder and inorganic binder solutions are adjusted to optimize the photocatalytic reaction performance. The TiO2 photocatalysis method is a simple and low-power approach to TOC analysis, making it a promising alternative to commonly used TOC analysis methods. This study aims to contribute to the development of more efficient and cost-effective approaches for water quality analysis and management by exploring the effectiveness and reliability of the developed equipment.

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.