• Title/Summary/Keyword: Fabric current collector

Search Result 1, Processing Time 0.022 seconds

The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process (인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과)

  • Seong, Du-Ri;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.466-473
    • /
    • 2020
  • Fabric current collector can be a promising electrode material for Capacitive Deionization (CDI) system that can achieve energy-efficient desalination of water. The one of the most attractive feature of the fabric current collector is its high tensile strength, which can be an alternative to the low mechanical strength of the graphite foil electrode. Another advantage is that the textile properties can easily make shapes by simple cutting, and the porosity and inter-fiber space which can assist facile flow of the aqueous medium. The fibers used in this study were made of woven structures using a spinning yarn using conductive LM fiber and carbon fiber, with tensile strength of 319 MPa, about 60 times stronger than graphite foil. The results were analyzed by measuring the salt removal efficiency by changing the viscosity of electrode slurry, adsorption voltage, flow rate of the aqueous medium, and concentration of the aqueous medium. Under the conditions of NaCl 200 mg/L, 20ml/min and adsorption voltage 1.5 V, salt removal efficiency of 43.9% in unit cells and 59.8% in modules stacked with 100 cells were shown, respectively. In unit cells, salt removal efficiency increases as the adsorption voltage increase to 1.3, 1.4 and 1.5 V. However, increasing to 1.6 and 1.7 V reduced salt removal efficiency. However, the 100-cell-stacked module showed a moderate increase in salt removal efficiency even at voltages above 1.5 V. The salt removal rate decreased when the flow rate of the feed was increased, and the salt removal rate decreased when the concentration of the feed was increased. This work shows that fabric current collector can be an alternative of a graphite foil.