• Title/Summary/Keyword: FWD test

Search Result 49, Processing Time 0.03 seconds

A Parameter Study of Stuctural Respanse Model in Flexible Pavement Substucture Layers (아스팔트 포장하부구조 층모델 결정에 관한 연구)

  • Choi, Jun-Seong;Seo, Joo-Won
    • International Journal of Highway Engineering
    • /
    • v.5 no.4 s.18
    • /
    • pp.13-22
    • /
    • 2003
  • Several design methods from overseas are employed without considering different conditions such as material properties, climate, and traffic condition in this country. Therefore, there are limitations in application. Therefore, new pavement analysis system which is able to design a pavement efficiently and economically should be set up. In this study, 243 probable sections are classified depending on values of layer thickness and elastic modulus, and the effect of load types for the probable sections are analyzed. The section showing larger load distribution is chosen for analysis. As a result of sensitivity, a layer thickness has more influence on pavement than an elastic modulus does. The stress distribution of FWD test load is larger than that of circular load. This study compares outputs between nonlinear elastic model and linear elastic model. Based on the result, this study finds nonlinear elastic model considering stress condition in the ground is recommended for subbase.

  • PDF

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF

Dynamic Response of Jointed Concrete Pavement in Test Road Due to Temperature Gradient (온도구배에 의한 시험도로 줄눈콘크리트 포장의 동적응답)

  • Yoo Tae-Seok;Jeong Jin-Hoon;Han Seung-Hwan;Sim Jong-Sung
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.25-32
    • /
    • 2006
  • Behavior of concrete pavement due to temperature gradient was investigated for 48 hours at test road using Falling Weight Deflectometer. The deflections at slab center changed similarly to those of ambient temperature and temperature gradients in the slab. And rapid variations in the deflections were observed between 8 to 12 in the morning. However, dynamic modulus of subgrade reaction and joint deflections showed reverse trends to the ambient temperature and temperature gradients. The dynamic modulus of subgrade reaction was significantly affected by temperature gradient when its value got higher. Backcalculated elastic moduli were obtained using AREA method and Method of Equivalent Thickness. The trends of the backcalculated elastic modulus were similar to those of dynamic modulus of subgrade reaction. Measured load transfer efficiencies showed maximum peak in the morning due to dowel locking. However, additional effort is necessary to verify the result.

  • PDF

A Comparison of Static and Dynamic Deformation Modulus by Dynamic Plate Test (동평판 재하시험을 이용한 정적 및 동적 변형계수 비교)

  • 박용부;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.335-342
    • /
    • 2003
  • The method of measuring ground deformation modulus, in situ-testing has the disadvantage where the exam number is limited because it needs counter weight and a lot of measurement times. Recently, it has supplemented this problem and the equipments by which measurement can be made quickly are developed and applied in field., That is Falling Weight Deflectometer(FWD), Light Drop Weight Tester(LDWT), Geogauge. Light Drop Weight Teste.(LDWT) is introduced firstly in the name of ‘a lightweight fall circuit tester for a railroad public corporation’ by KTX. Since KTX introduced LDWT, a number of research organizations have used LDWT to find out domestic standard for quality management of base ground. In this study we used ZFG 02 which was manufactured by Stendal in Germany and measured the dynamic deformation modulus in soil box and in-situ. And we analyzed the correlation of the dynamic deformation modulus with static deformation modulus based on plate test in the same ground.

Mechanical Properties of Controlled Low Strength Materials with Marine Dredged Soil (해양준설토를 이용한 유동성 뒤채움재의 역학적 특성)

  • Kim, Ju-Deuk;Lee, Byung-Sik;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.35-44
    • /
    • 2007
  • Plowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill mixes. Marine dredged soil was adopted for flowable fill instead of fly ash. Natural sea sand and in-situ soil were used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowble fill hardens was determined and the strength at 3-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, was determined along the curing time. The creep test for settlement potential was conducted. Also, potable falling weight deflectometer(PFWD) test has been carried out for elastic modulus of each controlled low strength materials(CLSM). The data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM.

Concrete Slab with Partial Supports due to its Deformation (자체변형에 의한 부분지지조건을 갖는 콘크리트 슬래브)

  • 한승환;유태석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.429-432
    • /
    • 1999
  • The concrete slab on the foundation may have curling and warping deformations due to moisture and temperature gradient of its section. These deformations may change the support conditions of concrete slabs, and cause higher level of stresses than expected. This study was performed to verify the effect of partial support condition of concrete slab on the foundation due to its deformations and to develop the useful analytic method for describing these phenomenons. The partial support condition verified by FWD test results, and it was concluded that the gap model could be useful in analysing the concrete slab with partial support conditions.

  • PDF

Feasibility Study on Calibration Method of Curling Behavior in Jointed Concrete Pavement Using Falling Weight Deflectometer (FWD를 이용한 줄눈 콘크리트포장 컬링거동 보정방법의 타당성 연구)

  • Yoo Tae-Seok;Lee Jae-Hoon
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.155-162
    • /
    • 2006
  • Deflections of jointed concrete pavements at test road are monitored during 48 hours. And methods of calibration with respect to curling deflections are suggested. Relations between deflection ratio of center to joint at test time and deflection ratio of center at test time to center at reference time are described by regression. From deflections at test time, deflections transformed to reference time which gives minimum deflections in a day are estimated through regression curves and concluded to propose as a alternative method of curling calibration with more data accumulation.

  • PDF

Thin Bonded Concrete Overlay for Concrete Pavement Rehabilitation (콘크리트포장의 박층 콘크리트 덧씌우기공법)

  • 윤경구;이형준;엄주용;서영찬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.635-642
    • /
    • 1997
  • This research focused on the development of concrete overlay and test, which was conducted at 88 Highway 105k, 2 lanes of 290 m. The field application test consists of 6 cm and 10 cm bonded concrete overlay and 25 cm unbonded concrete overlay, using the slag cement for opening lanes for traffic early. The overlay were placed in a day. The whole period of traffic closing wes 8 day and it was reopened to traffic after concrete overlay has cured for 3 day. 5 cracks were founded when the field test section was investigated after 1 month, but all these may not make significant problems to overlay because these initiated and growed at the same line of repair section. The rideability and skid resistance become much better like in the new pavement after overlay. The structural capacity against deflection was much. which were verified by FWD(Falling Weight Deflectometer). The field test section is being used in a good condition and the results of field application and pavement performance analysis are encouraging. This rehabilitation methods may be adopted in Korea after a more field performance verifications.

  • PDF

Behavior Evaluation of Thin Bonded Continuously Reinforced Concrete Overlay on Aged Jointed Concrete Pavement(2) (노후 줄눈 콘크리트 포장 보수를 위한 얇은 연속 철근 콘크리트 덧씌우기 포장의 거동 평가(2))

  • Ryu, Sung-Woo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.101-110
    • /
    • 2010
  • In this paper, it has been studied about the CRCO to maintain or rehabilitate the aged JCP. The CRCO and JCO was constructed at useless section of Seo-Hae-Ahn express highway in South Korea. The performance evaluation was conducted. Especially, it was focused on the roll of longitudinal reinforced steels inserted into the CRCO. On crack survey results from field construction section, the reflection cracks at joint of the existing pavement occurred in CRCO. However, due to the constraints of longitudinal reinforced steels, crack width was small. Total crack length and quantity in the CRCO more than that in the JCO. And crack spacing in the CRCO was narrower than it in the CRCP. Through the bonding strength test results, if the cold milling and cleaning as well as surface treatment is applied, there will be no debonding problem at interlayer in the early age. From analysis of the horizontal behavior at the joint, the longitudinal reinforced steels constrained crack width which became wider than initial state over time. Also, that steel in the CRCO reduced the horizontal movement due to temperature variation(4 times than that in the JCO). But, if interface is debonded, the roll decreased. Vertical VWG data showed that CRCO did not occur debonding problem at steel location, but there was some problem in JCO. It was confirmed by field coring. The tensile strain appeared in the CRCO, But the compressive strain occurred in the JCO in early age. Through the FWD test result, deflection in the CRCO was less than that in the JCO. And K value in the CRCO was greater than it in the JCO.

Validation of Permanent Deformation Model for Flexible Pavement using Accelerated Pavement Testing (포장가속시험을 이용한 소성변형예측 모델의 검증)

  • Choi, Jeong Hoon;Seo, Youngguk;Suh, Young Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.491-497
    • /
    • 2009
  • This paper presents the results of accelerated pavement tests (APT) that simulate permanent deformation (rutting) of asphalt concrete pavements under different temperatures and loading courses. Also, finite element (FE) analysis has been conducted to predict the test results. Test section for APT is the same as one of test sections at Korea Expressway Corporation test road and is subjected to a constant moving dual tire wheel load of APT at three different temperatures: 30, 40, $50^{\circ}C$. The moving wheel is applied at different loading courses within a 75cm wide wheel path to account for traffic wandering. Also, the effect of wandering on permanent deformation development is investigated numerically with three wandering schemes. In this study, ABAQUS is adopted to model APT pavement section with plain stain elements and creep strain rate model is used to take into account viscoplastic stain of asphalt concrete mixtures, and elastic layer properties are back-calculated from FWD measurements. Plus, the effect of boundary condition and subgrade on FE permanent deformation predictions is investigated. A full FE model that accounted for subgrade provided more realistic rut depth predictions, indicating subgrade has contributed to surface rutting.