• Title/Summary/Keyword: FW-H Equation

Search Result 26, Processing Time 0.019 seconds

Prediction of the Aerodynamic Noise Generated by Pantograph on High Speed Trains (고속철도 판토그래프의 공력소음 기여도 연구)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.425-431
    • /
    • 2013
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. Since aerodynamic noise caused pantograph should be measured in high speed, it is difficult to measure it and to analysis aerodynamic noise characteristics due to the various types of pantograph. In this research, aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, Wind tunnel test results and numerical simulation results were compared. As a result, Simulation results predicting sound pressure level is very similar with wind tunnel test result. To analyze contribution of the pantograph to the noise of high-speed train, simulation results compared with measurement results of exterior noise. The simulation reuslts found that pantograph is a dominant noise source of high-speed trains's exterior noise in low frequency section. This dominant noise was come out from vortex shedding of the panhead in the pantograph. This research will be utilized for reduce sound pressure level of pantograph.

  • PDF

Development of high performance and low noise axial-flow fan for cooling machine room of refrigerator using airfoil-cascade analysis and surface ridge shape (익렬 분석 및 표면 돌기 형상을 이용한 냉장고 기계실 냉각용 고성능/저소음 축류팬 개발)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2020
  • This study aims to improve the flow and noise performances of an axial-flow fan for cooling the machine room in a refrigerator by using airfoil-cascade analysis and surface ridge shape. First, the experimental evaluations using a fan performance tester and an anechoic chamber are performed to analyze the flow and noise performances of the existing fan system. Then, the corresponding flow and noise performances are numerically assessed using the Computational Fluid Dynamics (CFD) techniques and the Ffowcs-Williams and Hawkings (FW-H) equation, and the validity of numerical results are confirmed through their comparisons with the experimental results. The analysis for the flow of a cascade of airfoils constructed from the existing fan blades is performed, and the pitch angles for the maximum lift-to-drag ratio are determined. The improved flow performance of the new fan applied with the optimum pitch angles is confirmed. Then, the fan blades with surface ridges on their pressure sides are devised, and the reduction of aerodynamic noise of the ridged fan is numerically confirmed. Finally, the prototype of the final fan model is manufactured, and improvements in the flow and noise performances of the prototype are experimentally confirmed.

Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller (임펠라 스플리터 날개 최적 설계를 통한 무선진공청소기 팬 모터 단품의 공력 소음 저감)

  • Kim, Kunwoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.524-532
    • /
    • 2020
  • In this study, noise radiated from a high-speed fan-motor unit for a cordless vacuum cleaner is reduced by designing splitter blades on the existing impeller. First of all, in order to investigate the flow field through a fan-motor unit, especially impeller, the unsteady incompressible Reynolds-Averaged Navier-Stokes (RANS) equations are numerically solved by using computational fluid dynamic technique. With predicted flow field results as input, the Ffowcs Williams-Hawkings (FW-H) integral equation is solved to predict aerodynamic noise radiated from the impeller. The validity of the numerical methods is confirmed by comparing the predicted sound pressure spectrum with the measured one. Further analysis of the predicted flow field shows that the strong vortex is formed between the impeller blades. As the vortex induces the loss of the flow field and acts as an aerodynamic noise source, supplementary splitter blades are designed to the existing impeller to suppress the identified vortex. The length and position of splitter are selected as design factors and the effect of each design factor on aerodynamic noise is numerically analyzed by using the Taguchi method. From this results, the optimum location and length of splitter for minimum radiated noise is determined. The finally selected design shows lower noise than the existing one.

Optimal design of impeller in fan motor unit of cordless vacuum cleaner for improving flow performance and reducing aerodynamic noise (무선진공청소기 팬 모터 단품의 유량성능 향상과 공력소음 저감을 위한 임펠라 최적설계)

  • Kim, KunWoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.379-389
    • /
    • 2020
  • In this study, the flow and noise performances of high-speed fan motor unit for cordless vacuum cleaner is improved by optimizing the impeller which drives the suction air through flow passage of the cordless vacuum cleaner. Firstly, the unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equations are solved to investigate the flow through the fan motor unit using the computational fluid dynamics techniques. Based on flow field results, the Ffowcs-Williams and Hawkings (FW-H) integral equation is used to predict flow noise radiated from the impeller. Predicted results are compared to the measured ones, which confirms the validity of the numerical method used. It is found that the strong vortex is formed around the mid-chord region of the main blades where the blade curvature change rapidly. Given that vortex acts as a loss for flow and a noise source for noise, impeller blade is redesigned to suppress the identified vortex. The response surface method using two factors is employed to determine the optimum inlet and outlet sweep angles for maximum flow rate and minimum noise. Further analysis of finally selected design confirms the improved flow and noise performance.

Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers (압축성과 비압축성 유동해석에 따른 수중 추진기 날개 끝 와류공동과 공동소음에 대한 수치비교 연구)

  • Ha, Junbeom;Ku, Garam;Cho, Junghoon;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Without any validation of the incompressible assumption, most of previous studies on cavitation flow and its noise have utilized numerical methods based on the incompressible Reynolds Average Navier-Stokes (RANS) equations because of advantage of its efficiency. In this study, to investigate the effects of the flow compressibility on the Tip Vortex Cavitation (TVC) flow and noise, both the incompressible and compressible simulations are performed to simulate the TVC flow, and the Ffowcs Williams and Hawkings (FW-H) integral equation is utilized to predict the TVC noise. The DARPA Suboff submarine body with an underwater propeller of a skew angle of 17 degree is targeted to account for the effects of upstream disturbance. The computation domain is set to be same as the test-section of the large cavitation tunnel in Korea Research Institute of Ships and Ocean Engineering to compare the prediction results with the measured ones. To predict the TVC accurately, the Delayed Detached Eddy Simulation (DDES) technique is used in combination with the adaptive grid techniques. The acoustic spectrum obtained using the compressible flow solver shows closer agreement with the measured one.

Helicopter BVI Noise Prediction Using Acoustic Analogy and High Resolution Airloads of Time Marching Free Wake Method (자유후류기법에 의한 고해상도 공기력과 음향상사법을 이용한 헬리콥터 로터 블레이드-와류 상호작용 소음 예측)

  • Chung, K.;Lee, D.J.;Hwang, C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.291-297
    • /
    • 2006
  • The BVI(blade vortex interaction) noise Prediction has been one of the most challenging acoustic analyses in helicopter aeromechanical Phenomenon. It is well known high resolution airloads data with accurate tip vortex positions are necessary for the accurate prediction of this phenomenon. The truly unsteady time-marching free-wake method, which is able to capture the tip vortices instability in hover and axial flights, is expanded with the rotor flapping motion and trim routine to predict unsteady airloads in forward and descent flights. And Farassat formulation 1-A based on the FW-H equation is applied for the noise prediction considering the blade flapping motion. Main objective of this study is to validate the newly developed prediction code. To achieve the objective, the descent flight condition of AH-1 OLS(operational loads survey) configuration is analyzed using present code. The predicted sectional thrust distribution and sectional airloads time histories show the present scheme is able to capture well the unsteady airloads caused by a parallel BVI. Finally, the predicted noise data, observed in two different positions where are 3.44 times of rotor radius far from the hub center, are quite reasonable agreements with the experimental data compared to the other analysis results.