• Title/Summary/Keyword: FVFLIC method

Search Result 7, Processing Time 0.023 seconds

Analysis of Opening Characteristics for Puffer GCB (파퍼식 가스차단기의 동작특성 해석)

  • Kim, Hong-Gyu;Jeong, Jin-Gyo;Park, Gyeong-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.560-567
    • /
    • 2002
  • This paper presents the calculation of opening characteristics for puffer GCB with the equations of the flow field and the motion of the driving mechanism. To obtain the stroke curve, the motion equation is solved simultaneously with the Euler equations. For a given Piston location, the flow field is solved. The pressure inside the Puffer chamber is then used to calculate the moving velocity and the new position of the piston. The FVFLIC method is employed to solve the axisymmetric Euler equations and the motion equation is solved by the Runge-Kutta method. The method is applied to the puffer GCB model and the stroke curve and the pressure rise in puffer chamber under no load condition are compared with the measured ones.

Analysis of Hot Gas Flew Considering Arc-Flow Interaction (아크플라즈마와 유동간의 상호작용을 고려한 열가스 유동 해석)

  • Kim, Hong-Gyu;Park, Gyeong-Yeop;Bae, Chae-Yun;Jo, Gyeong-Yeon;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.107-115
    • /
    • 2002
  • This parer presents the analysis of hot gas flow in puffer-type circuit breakers using FVFLIC method. For the analysis of arc-flow interaction, the flow field is analyzed from the equations of conservation for mass, momentum and energy with the assumption of local thermodynamic equilibrium state. The arc is represented as the energy source term composed of ohmic heating and radiation term in the energy conservation equation. Ohmic heating is computed by the electric field analysis only within the conducting plasma region. An approximate radiation transport model is employed for the evaluation of emission and absorption of the radiation. The analysis method was applied to the real circuit breaker model and simulation results such as pressure rise and arc voltage were compared with the experimental ones.

Analysis of the Cold Gas Flow in Puffer Type Circuit Breaker (Puffer식 차단기 내의 냉가스 유동 해석)

  • Kim, Hong-Gyu;Sin, Seung-Rok;Jeong, Hyeon-Gyo;Kim, Du-Seong;Gwon, Gi-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.233-239
    • /
    • 2000
  • There are many difficult problems in analyzing the gas flow in puffer type circuit breaker such as complex geometry, moving boundary, shock wave and so on. To predict the interruption performance accurately, these should be considered in the simulation. In this paper, the analysis procedure of the cold gas flow in the circuit breaker is presented. Euler equation is solved by FVFLIC method which is an explicit time difference scheme for an unsteady flow computation. Moving boundaries are treated with a cell elimination-addition technique. The pressure and density in front of piston are calculated from the rate of the cell volume change. The presented method is applied to the real circuit breaker model and the pressure in front of the piston is good agreement with the experimental one.

  • PDF

Analysis of Small Current Interruption Performance for $SF_6$ Gas Circuit Breaker ($SF_6$ 가스차단기의 소전류 차단성능 해석)

  • Kim, Hong-Kyu;Song, Ki-Dong;Chong, Jin-Kyo;Oh, Yeon-Ho;Park, Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.528-533
    • /
    • 2006
  • To analyze the small current interruption performance for the gas circuit breakers, the gas density and electric field intensity should be calculated. In this paper, the FVFLIC method is used for the gas flow analysis and the FEM for the electric field analysis. Then, the dielectric withstanding voltage is evaluated by the empirical formulation or Streamer theory. By comparing the calculated dielectric strength with the test result, it is found that both methods show good prediction capability for the small current interruption performance. Especially, when both methods predict the same interrupting performance, the prediction is in accordance with the experimental result.

Analysis of Cold Gas Flow in Puffer Type GCB Considering the Real Gas Property of $SF_6$ ($SF_6$ 가스의 실제 기체특성을 고려한 파퍼식 가스차단기 내의 냉가스 유동해석)

  • 김홍규;정진교;박경엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • To analyze the performance of the gas circuit breaker(GCB), the flow field variables such as temperature, pressure and density should be evaluated accurately In the puffer chamber of puffer type GCB, the pressure rise may Exceed 20 bar and in this range of high pressure, $SF_6$ gas deviates the ideal gas property. Therefore, the real gas property of $SF_6$ should be taken into consideration for the accurate analysis of flow field. This paper presents the analysis technique of cold gas flow in GCB employing the real gas state equation of SF6. The FVFLIC method is Employed to solve the axisymmetric Euler equation. To reduce the computational effort of real gas state equation, the relationship between density and pressure is approximated by the polynomial at the temperature of 300K. The proposed method is applied to the test GCB model and simulation results show good agreement with the experimental ones.

Analysis of Small Current Interruption Performance for EHV Gas Circuit Breaker (초고압 가스차단기의 소전류 차단성능 해석)

  • Kim, H.K.;Park, K.Y.;Song, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.22-24
    • /
    • 2006
  • This paper presents the prediction method of small current interruption Performance for EHV gas circuit breakers. The FVFLIC method is used for the gas flow analysis and the FEM for the electric field analysis. Then, the dielectric withstanding voltage is evaluated by the empirical formulation or Streamer theory. By comparing the calculated dielectric strength with the test result. it is found that both methods show good prediction capability for the small current interruption performance. Especially, when both methods predict the same interrupting performance, the prediction is in accordance with the experimental result.

  • PDF

Analysis of Dielectric Breakdown of Hot SF6 Gas in a Gas Circuit Breaker

  • Kim, Hong-Kyu;Chong, Jin-Kyo;Song, Ki-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.264-269
    • /
    • 2010
  • This paper presents the analysis of the dielectric characteristics of a hot $SF_6$ gas in a gas circuit breaker. Hot gas flow is analyzed using the FVFLIC method considering the moving boundary, material properties of real $SF_6$ gas, and arc plasma. In the arc model, the re-absorption of the emitted radiation is approximated with the boundary source layer where the re-absorbed radiation energy is input as an energy source term in the energy conservation equation. The breakdown criterion of a hot gas is predicted using the critical electric field as a function of temperature and pressure. To validate the simulation method, breakdown voltage for a 145kV 40kA circuit breaker was measured for various conditions. Consistent results between the simulation and experiment were confirmed.