• 제목/요약/키워드: FTREX

검색결과 9건 처리시간 0.025초

원자력 NEWS

  • 한국원자력산업회의
    • 원자력산업
    • /
    • 제26권12호통권286호
    • /
    • pp.74-90
    • /
    • 2006
  • PDF

THE APPLICATION OF PSA TECHNIQUES TO THE VITAL AREA IDENTIFICATION OF NUCLEAR POWER PLANTS

  • HA JAEJOO;JUNG WOO SIK;PARK CHANG-KUE
    • Nuclear Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.259-264
    • /
    • 2005
  • This paper presents a vital area identification (VAI) method based on the current fault tree analysis (FTA) and probabilistic safety assessment (PSA) techniques for the physical protection of nuclear power plants. A structured framework of a top event prevention set analysis (TEPA) application to the VAI of nuclear power plants is also delineated. One of the important processes for physical protection in a nuclear power plant is VAI that is a process for identifying areas containing nuclear materials, structures, systems or components (SSCs) to be protected from sabotage, which could directly or indirectly lead to core damage and unacceptable radiological consequences. A software VIP (Vital area Identification Package based on the PSA method) is being developed by KAERI for the VAI of nuclear power plants. Furthermore, the KAERI fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert) is specialized for the VIP to generate the candidates of the vital areas. FTREX can generate numerous MCSs for a huge fault tree with the lowest truncation limit and all possible prevention sets.

JRTR 연구용원자로에 대한 최종 확률론적 안전성평가 (A Study on the Final Probabilistic Safety Assessment for the Jordan Research and Training Reactor)

  • 이윤환
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.86-95
    • /
    • 2020
  • This paper describes the work and the results of the final Probabilistic Safety Assessment (PSA) for the Jordan Research and Training Reactor (JRTR). This final PSA was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA described here is a Level 1 PSA, which addresses the risks associated with core damage. After reviewing the documents and its conceptual design, nine typical initiating events were selected regarding internal events during the normal operation of the reactor. AIMS-PSA (Version 1.2c) was used for the accident quantification, and FTREX was used as the quantification engine. 1.0E-15/yr of the cutoff value was used to deliminate the non-effective Minimal Cut Sets (MCSs) when quantifying the JRTR PSA model. As a result, the final result indicates a point estimate of 2.02E-07/yr for the overall Core Damage Frequency (CDF) attributable to internal initiating events in the core damage state for the JRTR. A Loss of Primary Cooling System Flow (LOPCS) is the dominant contributor to the total CDF by a single initiating event (9.96E-08/yr), and provides 49.4% of the CDF. General Transients (GTRNs) are the second largest contributor, and provide 32.9% (6.65E-08/yr) of the CDF.

확률론적 안전성 평가를 위한 정보 관리 시스템 개발 (The Development of a Advanced Information Management System for PSA)

  • 김승환
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.337-344
    • /
    • 2005
  • 원자력 발전소의 확률론적 안전성 평가(PSA)를 수행하기 위해서는 여러 가지 분야의 다양한 데이터가 필요하다. 그러므로 PSA의 수행 및 검토에 있어, 효과적인 자료의 관리가 필수적이라 할 수 있다. 한국 원자력연구소에서는 PSA 관련 모든 정보를 손쉽게 관리하기 위하여, PSA 정보 시스템(AIMS)을 개발하고 있다 AIMS는 PSA 분석에 필요한 모든 관련 문서와 모델을 통합하여, PSA평가를 손쉽게 수행할 수 있도록 개발한 시스템이다. 본 논문에서는 PSA정보 시스템의 개발 과정 및 데이터베이스 설계 그리고 입출력 시스템의 설계 및 구현에 관하여 기술하였다.

  • PDF

VIPEX를 이용한 가상 원자력시설의 핵심구역 파악 분석 (Vital Area Identification Analysis of A Hypothetical Nuclear Facility Using VIPEX)

  • 이윤환;정우식;이진홍
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.87-95
    • /
    • 2011
  • The urgent VAI(Vital Area Identification) method development is required since 'The Act of Physical Protection and Radiological Emergency' that is established in 2003 requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The KAERI(Korea Atomic Energy Research Institute) has developed the VAI methodology and VAI software called as VIPEX(Vital area Identification Package EXpert) for identifying the vital areas. This study is to demonstrate the applicability of KAERI's VAI methodology to a hypothetical facility, and to identify the importance of information of cable and piping runs when identifying the vital areas. It is necessarily needed to consider cable and piping runs to determine the accurate and realistic TEPS(Top Event Prevention Set). If the information of cable and piping runs of a nuclear power plant is not considered when determining the TEPSs, it is absolutely impossible to acquire the complete TEPSs, and the results could be distorted by missing it. The VIPEX and FTREX(Fault Tree Reliability Evaluation eXpert) properly calculate MCSs and TEPSs using the fault tree model, and provide the most cost-effective method to save the VAI and physical protection costs.

국내 연구용원자로 전출력 내부사건 1단계 확률론적안전성평가 (Internal Event Level 1 Probabilistic Safety Assessment for Korea Research Reactor)

  • 이윤환;장승철
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.66-73
    • /
    • 2021
  • This report documents the results of an at-power internal events Level 1 Probabilistic Safety Assessment (PSA) for a Korea research reactor (KRR). The aim of the study is to determine the accident sequences, construct an internal level 1 PSA model, and estimate the core damage frequency (CDF). The accident quantification is performed using the AIMS-PSA software version 1.2c along with a fault tree reliability evaluation expert (FTREX) quantification engine. The KRR PSA model is quantified using a cut-off value of 1.0E-15/yr to eliminate the non-effective minimal cut sets (MCSs). The final result indicates a point estimate of 4.55E-06/yr for the overall CDF attributable to internal initiating events in the core damage state for the KRR. Loss of Electric Power (LOEP) is the predominant contributor to the total CDF via a single initiating event (3.68E-6/yr), providing 80.9% of the CDF. The second largest contributor is the beam tube loss of coolant accident (LOCA), which accounts for 9.9% (4.49E-07/yr) of the CDF.

PSA를 이용한 연구용 원자로 안전성 향상 방안 도출 (Design Improvement to a Research Reactor for Safety Enhancement using PSA)

  • 이윤환
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.157-163
    • /
    • 2018
  • This paper describes design improvement to a research rector for safety enhancement using Probabilistic Safety Assessment (PSA). This PSA under reactor design was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA reported here is a Level 1 PSA, which addresses the risks associated with the core damage. The technical objectives of this study were to identify accident sequences leading to core damage and to derive design improvement from the dominant accident sequences through the sensitivity analysis. The AIMS-PSA and FTREX were used for the this PSA of the research reactor. The criterion for inclusion was all sequences with a point estimate frequency greater than a truncation value of 1.0E-14/yr. The final result indicates a point estimate of 6.79E-05/yr for the overall Core Damage Frequency (CDF) attributable to internal initiating events for the research reactor under design. Based on the dominant accident sequences from the PSA, the seven kinds of sensitivity analysis were performed and some design improvement items were derived. When the five methods to improve the safety were all applied to the reactor design and emergency operating procedure, its risk was reduced to about 1.21E-06/yr from 6.79E-05/yr. The contribution of LOCA and LOEP with high CDF were significantly reduced by the sensitivity analysis. The safety of the research reactor was well improved and the risk was reduced than before adapting the design improvement gotten from the sensitivity analysis. The present study indicated that the research reactor has the well-balanced safety in regard to each initiating event contribution to CDF. The PSA methodology is very effective to improve reactor safety in a conceptual design phase and especially, Risk-informed design(RID) is very nice way to find the deficiencies of research reactor under design and to improve the reactor safety by solving them.