• 제목/요약/키워드: FSI(Fluid-Structure Interaction)

검색결과 236건 처리시간 0.025초

외부 장착물 형상에 따른 F-5 항공기 수평미익의 공탄성 특성 예측 (The Prediction of Aeroelasticity of F-5 Aircraft's Horizontal Tail with Various Shape of External Stores)

  • 이기두;이영신;이대열;김인우;이인원
    • 한국항공우주학회지
    • /
    • 제39권9호
    • /
    • pp.823-831
    • /
    • 2011
  • 항공기 탑재 장비의 발달에 따라서 기존 운용 중인 항공기에 새로이 개발된 외부장착물을 추가하거나 교체하는 경우가 빈번히 발생하고 있다. 외부 장착물의 추가 및 변경은 기존 항공기의 전체적인 공력특성을 심각하게 변화시킬 수 있다. 따라서 요구되는 장착물 배열, 형상에 따른 유동 및 공탄성 현상의 파악은 항공기 개발단계 및 항공무장의 추가적인 개발 시 필수적으로 요구된다. 본 연구는 유체-공력 연계기법을 이용, 외부장착물의 형상에 따른 F-5 항공기 수평미익의 공탄성 특성변화에 대하여 검토하였다. 공기력 계산을 위하여 FLUENT 코드를, 구조 동특성 해석을 위하여 ABAQUS 코드를 사용하였으며, 전역지지 방사기저함수를 적용한 Code-bridge를 이용하여 입력 자료의 보간 및 사상을 수행하였다. 해석 결과 고려된 비행조건에서 외부장착물의 형상에 따른 수평미익의 공탄성 특성에 미소한 차이는 있었으나 플러터는 발생하지 않는 것으로 나타났다.

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions

  • Kim, Moon-Chan;Lee, Seung-Ki;Lee, Won-Joon;Wang, Jung-Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.116-131
    • /
    • 2013
  • The resistance performance of an icebreaking cargo vessel in pack ice conditions was investigated numerically and experimentally using a recently developed finite element (FE) model and model tests. A comparison between numerical analysis and experimental results with synthetic ice in a standard towing tank was carried out. The comparison extended to results with refrigerated ice to examine the feasibility of using synthetic ice. Two experiments using two different ice materials gave a reasonable agreement. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results from model testing with synthetic ice at the Pusan National University towing tank, and with refrigerated ice at the National Research Council's (NRC) ice tank, are used to validate and benchmark the numerical simulations. The designed ice-going cargo vessel is used as a target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. Ice was modeled as a rigid body but the ice density was the same as that in the experiments. The numerical challenge is to evaluate hydrodynamic loads on the ship's hull; this is difficult because LS-DYNA is an explicit FE solver and the FSI value is calculated using a penalty method. Comparisons between numerical and experimental results are shown, and our main conclusions are given.

Pulsatile Blood Flows Through a Bileaflet Mechanical Heart Valve with Different Approach Methods of Numerical Analysis : Pulsatile Flows with Fixed Leaflets and Interacted with Moving Leaflets

  • Park, Choeng-Ryul;Kim, Chang-Nyung;Kwon, Young-Joo;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1073-1082
    • /
    • 2003
  • Many researchers have investigated the blood flow characteristics through bileaflet mechanical heart valves using computational fluid dynamics (CFD) models. Their numerical approach methods can be classified into three types; steady flow analysis, pulsatile flow analysis with fixed leaflets, and pulsatile flow analysis with moving leaflets. The first and second methods have been generally employed for two-dimensional and three-dimensional calculations. The pulsatile flow analysis interacted with moving leaflets has been recently introduced and tried only in two-dimensional analysis because this approach method has difficulty in considering simultaneously two physics of blood flow and leaflet behavior interacted with blood flow. In this publication, numerical calculation for pulsatile flow with moving leaflets using a fluid-structure interaction method has been performed in a three-dimensional geometry. Also, pulsatile flow with fixed leaflets has been analyzed for comparison with the case with moving leaflets. The calculated results using the fluid-structure interaction model have shown good agreements with results visualized by previous experiments. In peak systole. calculations with the two approach methods have predicted similar flow fields. However, the model with fixed leaflets has not been able to predict the flow fields during opening and closing phases. Therefore, the model with moving leaflets is rigorously required for advanced analysis of flow fields.

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

CFD modelling of free-flight and auto-rotation of plate type debris

  • Kakimpa, B.;Hargreaves, D.M.;Owen, J.S.;Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.D.
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.169-189
    • /
    • 2010
  • This paper describes the use of coupled Computational Fluid Dynamics (CFD) and Rigid Body Dynamics (RBD) in modelling the aerodynamic behaviour of wind-borne plate type objects. Unsteady 2D and 3D Reynolds Averaged Navier-Stokes (RANS) CFD models are used to simulate the unsteady and non-uniform flow field surrounding static, forced rotating, auto-rotating and free-flying plates. The auto-rotation phenomenon itself is strongly influenced by vortex shedding, and the realisable k-epsilon turbulence modelling approach is used, with a second order implicit time advancement scheme and equal or higher order advection schemes for the flow variables. Sequentially coupling the CFD code with a RBD solver allows a more detailed modelling of the Fluid-Structure Interaction (FSI) behaviour of the plate and how this influences plate motion. The results are compared against wind tunnel experiments on auto-rotating plates and an existing 3D analytical model.

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-induced Vibration(FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.551-559
    • /
    • 2009
  • In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\epsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

디퓨져와 노즐을 이용한 열공압형 마이크로 펌프의 열공압 및 유동특성에 관한 수치해석적 연구 (A Numerical Study on the Thermopneumatic and Flow Characteristics of Diffuser-Nozzle Based Thermopneumatic Micropumps)

  • 정진;김창녕
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.642-648
    • /
    • 2005
  • This study has been conducted to investigate the thermopneumatic and flow characteristics of diffuser/nozzle based thermopneumatic micropumps. In this study, a transient three-dimensional numerical analysis using FSI (Fluid-Structure Interaction) model has been employed to analyze the effects of the interaction between the membrane and two fluids (air and water) in the thermopneumtic micropump. The transient temperature and pressure in the cavity, the transient displacements of the membrane and the net flow rate of the micropump have been closely calculated for the frequency of 1 Hz. It has been found that the difference of the flow rates at the inlet and outlet is larger in the cooling period than in the heating period and that the duty ratio is very important in association with pump performance because the temperature in the cavity ascends drastically in the heating period and descends slowly in the cooling period. This study can be regarded as fundamental understandings for the design and analysis of thermopneumatic micropumps.

Arbitrary Lagrange-Eulerian 기법을 활용한 액중 방전 성형의 해석적 연구 (Numerical Study of Electrohydraulic Forming Using an Arbitrary Lagrange-Eulerian Method)

  • 우민아;노학곤;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.49-55
    • /
    • 2016
  • Electrohydraulic forming (EHF) is a high-speed forming process that uses an electric arc discharge in water. Shock waves resulting from the electric arc discharge are propagated to the blank through water and the blank moves toward the die. Advantages of EHF include improved formability due to the high-speed process and reduction of the bouncing effect. In the current study, a numerical simulation of EHF was developed using LS-DYNA. In the simulation, the model for the electric arc was assumed as an adiabatic gas expansion and an Arbitrary Lagrange-Eulerian (ALE) multi material formulation was used to describe the interaction between the electric arc and the water. In order to model the Fluid-Structure Interaction (FSI), a coupling mechanism was used. The blank of Al 1100-O was simulated using shell elements. The results of the simulation showed that the blank was deformed due to the pressure propagation of water and the bouncing effect did not affect the formability of blank.