• Title/Summary/Keyword: FSI(Fluid Structure Interaction) analysis

Search Result 174, Processing Time 0.024 seconds

Global Ship Vibration Analysis by Using Distributed Fluid Added Mass at Grid Points (유체부가수질량 절점분포 방법에 의한 전선진동해석)

  • Kim, Young-Bok;Choi, Moon-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • Recently, the ship vibration analysis technique has been well set up by using FEM. The methods considering the hydrodynamic added mass and damping of the fluid surrounding a floating ship have been well developed, so that they can be calculated by using the commercial package FEM programs such as MSC/NASTRAN, ADINA and ANSYS. Especially, MSC/NASTRAN has the functions to consider the fluid in tanks(MFLUID) and to solve the Fluid-Structure Interaction(FSI) problem(DMAP). In this study, the global ship vibration with considering the added mass distributed at the grid points on the wetted shell surface is introduced to. In the new method, the velocity potentials of the fluid surrounding a floating ship are calculated by solving the Lapalce equation using the Boundary Element Method(BEM), and the point mass is obtained by integrating the potentials at the points. Then, the global vibration analyses of the ship structure with distributed added mass on the wetted surface are carried out for an oil/chemical tanker. During the future sea trial, the results will be confirmed by measurement.

A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump (고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구)

  • Koh, Sung-Wi;Kim, Byung-Tak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

Stress Based Node Refill Model for Lattice-Boltzmann Method on Fluid-Structure Interaction Problems (격자 볼츠만 법의 유체 구조 연성해석 적용에 대한 응력 기반 격자 재생성 모델)

  • Shin, Jae-Ho;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • The Lattice Boltzmann Method has developed for solving the Boltzmann equation in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. When a immersed boundaries are sweeping the fixed fluid node, refilling the node information in a vicinity of fluid nodes is one of the important issues in Lattice Boltzmann Method. In this study, we propose a simple refill algorithm for the particle distribution function based on a proper velocity, density and strain rate to enhance accuracy and stability of the method. The refill scheme based on a asymptotic analysis of LBGK model has improved accuracy than interpolation schemes. The proposed scheme in this study is validated by the simulations of an impulsively started rotating circular cylinder to investigate adaptability for fluid-structure interaction (FSI) problem. This refill scheme has improved stability and accuracy especially at high Reynolds number region.

Wet Drop Impact Response Analysis of CCS in Membrane Type LNG Carriers -II : Consideration of Effects on Impact Response Behaviors- (멤브레인형 LNG선 화물창 단열시스템의 수면낙하 내충격 응답해석 -II : 내충격 응답거동에 미치는 영향 고찰-)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Kim, Wha-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.735-749
    • /
    • 2008
  • For the development of the original technique of structural safety assessment of Cargo Containment System(CCS) in membrane type LNG carriers, it is necessary to understand the characteristics of dynamic response behavior of CCS structure under sloshing impact pressure. In the previous study, the wet drop impact response analyses of CCS structure in membrane Mark III type LNG carriers were carried out by using Fluid-Structure Interaction(FSI) analysis technique of LS-DYNA code, and were also validated through a series of wet drop experiments for the enhancement of more accurate shock response analysis technique. In this study, the characteristics of structural shock response behaviors of CCS structure were sufficiently figured out by careful examinations of the effects of specimen weight, drop height, incident angle, corrugation and stiffness of inner hull on its shock response behaviors. The shock response analysis of upward shooting fluid to inner hull was performed, and the reason of faster strain response than shock pressure one was also figured out.

Numerical Stability of Serial Staggered Methods in Fluid-Structure Interaction Analysis of Solid Rocket Motors (고체추진기관의 유동-구조 상호작용 해석에서 Serial Staggered 기법의 수치 안정성)

  • Cho, Hyun-Joo;Lee, Jee-Ho;Lee, Chang-Soo;Kim, Chong-Am;Kim, Shin-Hoe;Lee, Jeong-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.179-185
    • /
    • 2016
  • In this paper numerical stability of CSS and ISS schemes in axisymmetric fluid-structure-burning simulation for solid rocket motors are studied. The implemented CSS and ISS algorithms for two-dimensional axisymmetric FSI problems are used to analyze ACM and BCM solid rocket motors. Numerical results from CSS and ISS schemes are compared to investigate the efficacy of ISS scheme over CSS scheme in stabilizing the numerical solution. The ACM and BCM simulation results show that ISS scheme gives stable and converged numerical solutions with appropriately small system time step size, while CSS scheme fails to converge after generating rapidly amplified oscillatory solutions. It is concluded that ISS scheme can be useful in improving the numerical stability of FSI analysis for ACM and BCM solid rocket motor simulations, which is not successfully obtained with CSS scheme.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Study on Vortex-Induced Vibration Predictions for Ship Rudders

  • Jang, Won-Seok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.325-333
    • /
    • 2020
  • As regulations concerning ship vibration and noise are becoming stricter, considerable attention is being drawn to prediction technologies for ship vibration and noise. In particular, the resonance and lock-in phenomena caused by vortex-induced vibration (VIV) have become considerably important with increases in the speed and the size of ships and ocean structures, which are known to cause structural problems. This study extends the fluid-structure interaction (FSI) analysis method to predict resonances and lock-in phenomena of high modes and VIV of ship rudders. Numerical stability is secured in underwater conditions by implementing added mass, added damping, and added stiffness by applying the potential theory to structural analysis. An expanded governing equation is developed by implementing displacements and twist angles of high modes. The lock-in velocity range and resonant frequencies of ship rudders obtained using the developed FSI method agree well with the experimental results and the analytic solution. A comparison with local vibration guidelines published by Lloyd's Register shows that predictions of resonances and lock-in phenomena of high modes are necessary in the shipbuilding industry due to the possible risks like fatigue failure.

Design of Flexible Composite Propellers considering Fluid-structure Interaction (유체-구조 연성 효과를 고려한 복합소재 유연 프로펠러의 설계)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Kim, Gun-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.61-69
    • /
    • 2020
  • Due to its flexibility of the composite propeller blade, it is necessary to design a shape capable of generating a desired load at a design point in consideration of the shape change of the propeller. In order to design it, we need to evaluate not only the hydrodynamic force around it, but also its structural response of flexible propeller according to its deformation. So, it is necessary to develop a design tool to predict the hydroelastic performance of a flexible propeller with deformation considering fluid-structure interaction and special operating conditions. Finally a design optimization tool for flexible propellermade of CFRP is required. In this study, a design methodology of the specific flexible composite propeller is suggested, considering fluid-structural interaction analysis of the specific flexible propeller.

Numerical Study of Ablation Phenomena of Flame Deflector

  • Lee, Wonseok;Yang, Yeongrok;Shin, Sangmok;Shin, Jaecheol
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.10-18
    • /
    • 2021
  • A flame deflector prevents a launch system from thermal damage by deflecting the exhaust flame of the launch vehicle. During the deflection of the flame, the flame deflector is subjected to a high-temperature and high-pressure flow, which results in thermal ablation damage at the surface. Predicting this ablation damage is an essential requirement to ensure a reliable design. This paper introduces a numerical method for predicting the ablation damage phenomena based on a one-way fluid-structure interaction (FSI) analysis. In the proposed procedure, the temperature and convective heat transfer coefficient of the exhaust flame are calculated using a fluid dynamics analysis, and then the ablation is calculated using a finite element analysis (FEA) based on the user-subroutine UMESHMOTION and Arbitrary Lagrangian-Eulerian (ALE) adaptive mesh technique in ABAQUS. The result of such an analysis was verified by comparison to the ablation test result for a flame deflector.

Effects of Viscosity of Hydraulic Oil on the Performance of Actuator (유압유 점도가 액추에이터 성능에 미치는 영향)

  • Kim, Jin-Hyoung;Han, Su-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.