• Title/Summary/Keyword: FSAR

Search Result 24, Processing Time 0.023 seconds

고리2호기 주급수차단밸브 구동용 질소 고압연동신호 제거

  • 윤덕주
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.392-397
    • /
    • 1997
  • 고리 2호기 주급수 차단밸브의 경우 다른 호기와는 달리 구동용 질소압력 측정스위치에 의한 닫힘 연동신호가 설치되어 있다. 이러한 연동신호는 벨브 구동용 반구내 질소 압력 스위치 "고" 오동작에 의한 밸브차단 가능성이 있으며 이 경우 질소압력스위치가 저/고 경보창에 COMMON되어 있어 원인 규명에 어려움이 있다. 또한 질소압력 스위치 고장 및 질소가스 누설시 작업수행이 어렵고 위험이 따른다. 이러한 70년대 발전소 설계의 과잉설비를 제거하므로서 최적운전과 경제성 향상에 기여할 수 있으며 아울러 유지정비의 용이성과 밸브 불시닫힘을 미연에 예방할 수 있으리라 예상된다. 이와 관련하여 발전소 계통안전성, 기기안전성을 평가한 결과 기존의 안전해석결과가 유효하며 또한 FSAR 수정없이 이러한 설비변경이 가능하다는 결론에 도달하였다.결론에 도달하였다.

  • PDF

중수감속 가압경수로의 개념설계

  • 김명현;윤진규
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.112-116
    • /
    • 1996
  • 신형경수로의 대안으로서 가압경수로의 단점을 보완하고, 가압중수로의 장점을 채택한 중수감속 경수로의 핵적 개념설계를 제안하였다. 냉각재와 감속재가 서로 다른 채넬을 통해 흐르는 기존 가압중수로의 Pressure-Tube 설계의 장점을 채택하여, 냉각재는 경수를 감속재는 중수를 사용하는 중수감속 가압경수로(DPWR, Deuterium-moderated PWR)의 설계 타당성을 검토하였다. 기본적으로 CANDU의 system설계를 Proven Technology로서 가능한 많이 채택하고, CANFLEX 핵연료 설계도 기존 연구 결과로서 최대한 활용하였다. 월성 2,3,4호기 FSAR의 사양을 그대로 사용하여 기존 중수로의 37봉 핵연료 다발을 6$\times$6 직각 배열 등가 핵연료집합체로 재구성한 후, SEU $UO_2$ 핵연료에 대해 HELIOS코드를 사용하여 핵적 특성을 검토하였다. 냉각재 온도계수가 음의 안전성을 갖고 있으며, 기존 중수로보다 연소도가 훨씬 큰 원자로가 설계될 수 있음을 확인하였다. 또한 발전소 이용률의 증대, 사용후 핵연료 발생량의 감소를 기대할 수 있었다.

  • PDF

A STUDY ON AN ASSESSMENT METHOD FOR IMPROVING TECHNICAL SPECIFICATIONS USING SYSTEM DYNAMICS

  • KANG KYUNG MIN;JAE MOOSUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Limiting conditions for operations (LCOs) are evaluated dynamically using the tool of system dynamics. The LCOs de-fine the allowed outage times (AOTs) and the actions to be taken if the repair cannot be completed within the AOT. System dynamics has been developed to analyze the dynamic reliability of a complicated system. System dynamics using Vensim software have been applied to LCOs assessment for an example system, the auxiliary feed water system of a reference nuclear power plant. Analysis results of both full power operation and shutdown operation have been compared for a measure of core damage frequency. The framework developed in this study has been shown to be very flexible in that it can be applied to assess LCOs quantitatively under any operational context of the TS in FSAR.

A Study on Dynamic Test of Safety System Software on Nuclear Power Plant (원자력발전소 안전계통 소프트웨어의 동적시험에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Lee, Sun-Sung;Suh, Young
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.213-223
    • /
    • 1999
  • In recently, the safety system software of the nuclear power plant has been verified and validated according to ANSI/IEEE-ANS-7-4.3.2-1982 to improve the reliability. This standard requires that safety-related software should be tested in the static and dynamic environments. In case of Inadequate Core Cooling Monitoring System (ICCMS), the static test procedure and related techniques are developed but the dynamic test procedure and related techniques are not developed. Therefore, this paper discusses the undeveloped techniques, and suggests the dynamic test procedure and the program for generation of test input data. The performance of the program was identified using accident analysis report of Ulchin 3&4 Final Safety Analysis Report (FSAR).

  • PDF

Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors

  • Safavi, Amir;Esteki, Mohammad Hossein;Mirvakili, Seyed Mohammad;Arani, Mehdi Khaki
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1603-1610
    • /
    • 2020
  • Due to ever-growing advancements in computers and relatively easy access to them, many efforts have been made to develop high-fidelity, high-performance, multi-physics tools, which play a crucial role in the design and operation of nuclear reactors. For this purpose in this study, the neutronic Monte Carlo and thermal-hydraulic sub-channel codes entitled MCNP and COBRA-EN, respectively, were applied for external coupling with each other. The coupled code was validated by code-to-code comparison with the internal couplings between MCNP5 and SUBCHANFLOW as well as MCNP6 and CTF. The simulation results of all code systems were in good agreement with each other. Then, as the second problem, the core of the VVER-1000 v446 reactor was simulated by the MCNP4C/COBRA-EN coupled code to measure the capability of the developed code to calculate the neutronic and thermohydraulic parameters of real and industrial cases. The simulation results of VVER-1000 core were compared with FSAR and another numerical solution of this benchmark. The obtained results showed that the ability of the MCNP4C/COBRA-EN code for estimating the neutronic and thermohydraulic parameters was very satisfactory.

RCGVS Design Improvement and Depressurization Capability Tests for Ulchin Nuclear Power Plant Units 3 and 4

  • Sung, Kang-Sik;Seong, Ho-Je;Jeong, Won-Sang;Seo, Jong-Tae;Lee, Sang-Keun;Keun hyo Lim;Park, Kwon-Sik;Oh, Chul-Sung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.417-422
    • /
    • 1998
  • he Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3&4(UCN 3&4) has been improved from the Yonggwang Nuclear Power Plant Units 3&4(YGN 3&4) based on the evaluation results for depressurization capability tests performed at YGN 3&4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown Phenomena in order to optimize the orifice size of UCN 3&4 RCGVS. Baesd on these analyses results, the RCGVS orifice size for UCN 3&4 has been reduced to 9/32 inch from the l1/32 inch for YGN 3&4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3&4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation.

  • PDF

A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants (원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구)

  • Lee, Seung-Pyo;Kim, Jin-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.

Development of Transient Simulation Code for Pressurized Water Reactors (가압경수형 원자력발전소의 과도현상 모의코드 개발)

  • Auh, Geun-Sun;Ko, Chang-Seog;Lee, Sung-Jae;Hwang, Dae-Hyun;Kim, Dong-Su;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 1987
  • A plant simulation code, MCSIM (Micro-Computer SIMulator), has been developed to simulate plant transient accidents for pressurized water reactors. Reactor coolant system is modeled using decoupled energy and momentum equations, drift flux two-phase flow model and integral momentum equation. A two-fluid pressurizer model is used to simulate the pressurizer dynamics. Pot Boiler model is used for steam generator, steady-state decoupled energy and momentum equations for secondary side system, and point kinetics equations for nuclear power calculation. For test of the present version of MCSIM, complete loss of flow and RCCA withdrawal accidents are calculated with MCSIM. The results are compared with those in FSAR of KNU 5 & 6.

  • PDF

Analysis of Loss of Offsite Power Transient Using RELAP5/MOD1/NSC; II: KNU1 Design-Base Simulation (RELAP5/MOD1/NSC를 이용한 원자력 1호기 외부전원상실사고해석;II:설계기준사고)

  • Kim, Hyo-Jung;Chung, Bub-Dong;Lee, Young-Jin;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.175-182
    • /
    • 1986
  • The KNUI (Korea Nuclear Unit 1) loss of offsite power transient as a design-base accident has been simulated using the RELAP5/MOD1/NSC computer code. The analysis is carried out using the best-estimate methodology, but the sequence and its assumptions are based on the evaluation methodology th at emphasizes conservatism. Important thermal-hydraulic parameters such as average temperature, steam generator level and pressurizer water volume are compared with the results in the KNU1 Final Safety Analysis Report (FSAR). The present analysis gives much lower RCS average temperature and pressurizer water volume, and much higher S/G water volume at the turnaround point, which may be considered to be additional improved safety margins. This is expected since the present analysis deals with the best-estimate thermal-hydraulic models as well as the initial conditions on a best-estimate basis. These additional safety margins may contribute to further validate the safety of the KNU1 in this type of accidents(Decrease in Heat Removal by the Secondary System).

  • PDF

Sensitivity Analysis on PWR Reactivity Induced Accidents (가압경수로 반응도사고에 대한 민감도 분석)

  • Myung Hyun Kim;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.122-137
    • /
    • 1982
  • Analyzed is the sensitivity of reactor transient behavior to various reactor parameters during the reactivity induced accidents (RIA) of the Kori Unit 1. Included in the analysis is a partial spectrum of RIAs with relatively fast transients such as uncontrolled rod cluster control assembly bank withdrawl from a subcritical or low power startup condition and rod ejection accidents. The analysis can be performed generally in three steps: calculation of an average core power change, hot spot heat transfer calculation and DNBR (departure from nucleate boiling ratio) calculation. The computer codes used for the analysis are either developed based on the codes relevent to it. These codes are evaluated to be highly reliable. An extensive sensitivity analysis is performed to study the effects of various reactor design and operating parameters on the reactor transient behavior during the accidents. The assumptions and initial conditions used for the RIA analysis in the Kori Unit 1 FSAR (Final Safety Analysis Report) are reexamined, and the corresponding analysis results are reassessed, based on the sensitivity analysis results, to be conservative and reliable.

  • PDF