• 제목/요약/키워드: FRP failure strain

검색결과 77건 처리시간 0.025초

An efficient method for the compressive behavior of FRP-confined concrete cylinders

  • Fan, Xinglang;Wu, Zhimin;Wu, Yufei;Zheng, Jianjun
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.499-518
    • /
    • 2013
  • Fiber reinforced polymer (FRP) jackets have been widely used as an effective tool for the strengthening and rehabilitation of concrete structures, especially damaged concrete columns. Therefore, a clear understanding of the compressive behavior of FRP-confined concrete is essential. The objective of this paper is to develop a simple efficient method for predicting the compressive strength, the axial strain at the peak stress, and the stress-strain relationship of FRP-confined concrete. In this method, a compressive strength model is established based on Jefferson's failure surface. With the proposed strength model, the strength of FRP-confined concrete can be estimated more precisely. The axial strain at the peak stress is then evaluated using a damage-based formula. Finally, a modified stress-strain relationship is derived based on Lam and Teng's model. The validity of the proposed compressive strength and strain models and the modified stress-strain relationship is verified with a wide range of experimental results collected from the research literature and obtained from the self-conducted test. It can be concluded that, as a competitive alternative, the proposed method can be used to predict the compressive behavior of FRP-confined concrete with reasonable accuracy.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • 제19권2호
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제46권1호
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

Experimental Study on the Bond Charateristics for FRP Sheet-Concrete Interface (쉬트형 FRP와 콘크리트의 부착특성에 관한 실험적 연구)

  • Ko, Hune-Bum;Ko, Man-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.361-364
    • /
    • 2006
  • In this study, six specimens were prepared for two type FRP sheets(carbon and polyacetal) to evaluate the behavior of FRP-concrete interfacial bond. A direct tensile test was conducted and the test results show that fiber type influences both bond strength and the shape of strain distribution. The failure mode for carbon type specimens seems to bond failure between concrete and FRP, but for polyacetal type indicates interface failure between FRP and expoxy. The local bond stress-slip relations were obtained from test results, and it was shown good shape for the polyacetal type. But for the carbon type it was scattered.

  • PDF

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • 제19권3호
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.

Nonlinear Model of FRP-Confined Concrete Members Considering with Three-Dimensional Behaviors (3차원 거동에 의한 원형 FRP-구속 콘크리트의 부재 비선형 모델)

  • Cho Chang-Geun;Kwon Minho;Park Moon-Ho;Kim Wha-Jung;Bae Soo-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.738-741
    • /
    • 2004
  • This study is concerning on modeling to predict the flexural behaviors of FRP-confined concrete structural members. For compressive behaviors of confined concrete by FRP jackets, the hypoelasticity-based constitutive law of concrete has been presented under the basis of three-dimensional stress states. The strength enhancement of concrete wrapped by FRP jackets has been determined by the failure surface of concrete in tri-axial states, and its corresponding peak strain is computed by the strain enhancement factor. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimensional stress states. To be based on the three-dimensional constitutive laws, an algorithm for the prediction of flexural bending behaviors of FRP-confined concrete structural member has been presented.

  • PDF

Shear Strengthening Effect of RC Beams with FRP Sheets with respect to Shear Reinforcement Ration (전단보강비에 따른 FRP 쉬트의 전단보강성능)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.68-71
    • /
    • 2004
  • In the shear strengthening with FRP sheets, beams are wrapped around the webs and tension face of critical shear span by fiber sheets. The shear strength of RC beam strengthened with FRP sheets must be calculated based on the effective strain that can be developed in the FRP sheets at ultimate stage because the final failure modes of beams are governed by premature debonding of FRP sheet due to the limitation of bonded length by beam depth. An experimental study is carried out to evaluate the shear strengthening effect of AFRP or GFRP sheets with respect to shear reinforcement ratio of rebar. From the test results, it was found that the additional shear strength provided by GFRP or AFRP can be estimated by $p_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet $4,000m{\mu}$ proposed by ACI 440 committee.

  • PDF

Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method (FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석)

  • Cho, Baik-Soon;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제10권2호
    • /
    • pp.175-186
    • /
    • 2006
  • Strength method for determining nominal moment capacity of reinforced concrete members is also assumed to be suitable for strengthened members with FRP system. If the internal tensile forces of the strengthened member from steel and FRP is insufficient, the FRP system strain might become greater than its ultimate tensile strain which makes the strength method a contradiction and unapplicable. The experimental results of 27 strengthened beams with carbon fiber sheets which have relatively lower tensile forces from steel and FRP show that not only concrete compressive strain is lower than 0.003 but also measured ultimate moment was lower than nominal moment using the strength method.