• Title/Summary/Keyword: FRP Tube

Search Result 76, Processing Time 0.025 seconds

The Experimental Study on the Seismic Strengthening Effect of FRP Circular Tube on the Circular Bridge Piers (기존 교각의 FRP 원통관을 이용한 내진보강의 실험연구)

  • 황윤국;윤순종;김정호;최영민;박경훈;권태규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.973-978
    • /
    • 2003
  • This paper describes the experimental study on seismic strengthening effect of circular bridge columns with poor lap-splice details using FRP(Fiber Reinforced Plastic) wrapping, The as-built column suffered brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or any ductility, The strengthening columns using FRP wrapping showed significant improvement in seismic performance due to FRP's confinement effect.

  • PDF

Study on the relief design for the fault current of polymer arrester (폴리머 피뢰기의 고장전류에 대한 방압 설계기술에 관한 연구)

  • Kim, In-Sung;Park, Hoy-Yul;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1717-1719
    • /
    • 1999
  • The chief advantage of polymer arrester. from design of pressure relief, anti-contamination, electrical failure was reduced by outdoor polymer housing. In the first for development of pressure relief design for polymer arrester, fault current and surge were studied through experiments of electrical. Designed the FRP inner tube and unit modules for pressure relief housing. Tested the performance of unit modules for pressure relief of polymer arrester, and the result was successful. The pressure relief of polymer arrester depend on design pattern of diamond shape and ellipse. Study on the pressure relief of FRP inner tube for outdoor polymer arrester. Designed and manufactured FRP inner tube of polymer arrester. Tested the fault current of polymer arrester per 10 kA, 10 cycle.

  • PDF

A Study on Optimal Fitting for Tightness Characteristics of Composite Bushing (Composite 부싱의 기밀 특성을 위한 최적의 압착에 관한 연구)

  • Cho, Han-Goo;Kang, Hyung-Kyung;Yoo, Dea-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.390-391
    • /
    • 2009
  • Recently, composite hollow bushings have been increasingly employed mainly from the various characteristics. Composite bushings are superior to porcelain bushings in several respects, including lighter weight, better anti-pollution and anti-explosion properties, and easer manufacturing. This paper deals with the optimal thermal fitting for improved tightness characteristics of composite bushing. Two types of composite bushings were fabricated. For optimal fitting process, it is necessary using adhesive and designed internal structure of flange and FRP tube. In this study, for improved tightness characteristics of composite bushing has prominence and interface tolerance of flange and FRP tube. From FE-SEM analysis the adhesive layers were different with interface tolerance, sample 1 and 2 which have respective about $120{\mu}m$ and $50{\mu}m$.

  • PDF

The Performance Test and Mechanical Strength Analysis for 154kV Hollow Composite Insulator (154kV급 Hollow Composite Insulator의 기계적 강도해석 및 특성시험)

  • Park, Ki-Ho;Cho, Han-Gu;Han, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.495-498
    • /
    • 2002
  • This paper describes the results the problem of stress calculation and optimization into a FRP(Fiber-glass Reinforced Plastic) tube crimped into a metal end-fitting. This type of assembly is used mainly is used mainly for suspension and line post insulators. Fitting strength of FRP and flange of this study is required greatly from composite insulator to important special quality. Therefore, wish to seek analysis and mechanical strength performance that follow to FRP tube and flange of top and bottom mechanical fitting.

  • PDF

The Experiment and Design Formula of Rectangular CFT Columns Reinforced by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 각형 CFT기둥의 실험 및 설계식)

  • Park, Jai-Woo;Chung, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4024-4030
    • /
    • 2010
  • Axial load tests and cyclic load tests for FRP reinforced rectangular CFT columns were carried out The main parameters were width-thickness ratio of a steel tubeand FRP layer numbers for the axial load tests and were concrete strength and FRP layer numbers for cyclic load tests. The maximum strength and ductility capacity were compared between the current CFT columns and the FRP reinforced CFT columns. Finally, the axial design formulas were presented for the FRP reinforced CFT columns.

Circumferential Confinement Effect of Circular Bridge Pier with FRP Wrapping in Earthquake (지진발생시 FRP 보강이 횡방향 구속에 미치는 효과)

  • 최영민;황윤국;권태규;윤순종
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.280-287
    • /
    • 2003
  • The bridge columns with lap-splice reinforcements in earthquake suffered a brittle bond-slip failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP wrapping. The retrofitted columns using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the circumferential confinement effect of existing circular bridge pier strengthened with FRP wrapping for poor lap-splice details. The effects on the confinement of FRP wrapping, such as gap lengths between footing and FRP, fiber orientations, and thicknesses of FRP, were investigated by Quasi-static experiments.

  • PDF

Development of Hybrid FRP-Concrete Composite Pile Connection (하이브리드 FRP-Concrete 복합말뚝의 연결부의 개발)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.52-57
    • /
    • 2014
  • Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

Performance Evaluation of Scale-down Concrete Filled FRP Columns (축소모형실험을 통한 콘크리트 충전 FRP 합성교각의 성능 평가)

  • Youm, Kwang-Soo;Lee, Seung-Hwe;Lee, Young-Ho;Song, Jae-Joon;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.135-144
    • /
    • 2009
  • The present paper represents experimental studies on the performance of concrete filled FRP columns. Eight scale-down specimens were conducted by quasi-static cyclic loading test. FRP thickness, concrete strength, horizontal rebar ratio, and diameter were selected as test parameters. The capacities of ductility for cyclic loading was evaluated and the damping ratio and failure mode from the stiffness reduction of each test specimen were compared.