• Title/Summary/Keyword: FRP Reinforced Concrete

Search Result 556, Processing Time 0.028 seconds

Repair of Highway Bridge damaged by Chloride Attack in Marine Environment(2) - Application of Cathodic Protection (해양에 위치한 고속도로교량에 대한 내염보수 공법(2)-전기방식시공결과)

  • Chi, Han-Sang;Han, Bog-Kyu;Cheong, Hai-Moon;Ahn, Tae-Song;Ryu, Jong-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.786-789
    • /
    • 2004
  • Corrosion of reinforced concrete structures in marine environment is one of the most important mechanism of deterioration. However, conventional rehabilitation techniques in tidal zone, which consist of removing delaminated areas of concrete, cleaning affected steel and patching with portland cements mortar, have proven to be ineffective for marine structures. Also, repairs are often repeated every several years. The purpose of this report is to announce appropriate repair method of highway bridge damaged by chloride attack in marine environment (application of cathodic protection) using FRP and antiwashout underwater mortar.

  • PDF

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.

Load carrying capacity of CFRP retrofitted broken concrete arch

  • Wang, Peng;Jiang, Meirong;Chen, Hailong;Jin, Fengnian;Zhou, Jiannan;Zheng, Qing;Fan, Hualin
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.187-194
    • /
    • 2017
  • To reuse a broken plain concrete (PC) arch, a retrofitting method was proposed to ensure excellent structural performances, in which carbon fiber reinforced polymers (CFRPs) were applied to repair and strengthen the damaged PC arch through bonding and wrapping techniques. Experiments were carried out to reveal the deformation and the load carrying capacity of the retrofitted composite arch. Based on the experiments, repairing and strengthening effects of the CFRP retrofitted broken arch were revealed. Simplified analysing model was suggested to predict the peak load of the CFRP retrofitted broken arch. According to the research, it is confirmed that absolutely broken PC arch can be completely repaired and reinforced, and even behaves more excellent than the intact PC arch when bonded together and strengthened with CFRP sheets. Using CFRP bonding/wrapping technique a novel efficient composite PC arch structure can be constructed, the comparison between rebar reinforced concrete (RC) arch and composite PC arch reveals that CFRP reinforcements can replace the function of steel bars in concrete arch.

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Gemi, Lokman;Alsdudi, Mohammed;Aksoylu, Ceyhun;Yazman, Sakir;Ozkilic, Yasin Onuralp;Arslan, Musa Hakan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.735-757
    • /
    • 2022
  • The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Behavior of pre-cracked deep beams with composite materials repairs

  • Boumaaza, M.;Bezazi, A.;Bouchelaghem, H.;Benzennache, N.;Amziane, S.;Scarpa, F.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.575-583
    • /
    • 2017
  • The study covers the behavior of reinforced concrete deep beams loaded under 4-point bending, failed by shear and repaired using bonding glass fiber reinforced plastics fabrics (GFRP) patches. Two rehabilitation methods have been used to highlight the influence of the composite on the ultimate strength of the beams and their failure modes. In the first series of trials the work has been focused on the reinforcement/rehabilitation of the beam by following the continuous configuration of the FRP fabric. The patch with a U-shape did not provide satisfactory results because this reinforcement strategy does not allow to increase the ultimate strength or to avoid the abrupt shear failure mode. A second methodology of rehabilitation/reinforcement has been developed in the form of SCR (Strips of Critical Region), in which the composite materials reinforcements are positioned to band the inclined cracks (shear) caused by the shear force. The results obtained by using this method lead a superior out come in terms of ultimate strength and change of the failure mode from abrupt shearing to ductile bending.

Numerical investigation on beams prestressed with FRP

  • Pisani, Marco A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.349-364
    • /
    • 2000
  • This paper aims to make a contribution to understanding which methods apply for structural analysis of beams prestressed with FRP cables. A parametric non-linear numerical analysis of simply supported beams has been performed. In this analysis the shape of the cross-section, the strength of concrete, the material adopted for the cables (steel, GFRP, CFRP), the prestressing system (bonded or unbonded prestressing) and the degree of prestressing were changed to collect a broad range of data which, the author contends, should cover the most frequent types of common practice. The output data themselves and their comparison allow us to suggest some rules that could be adopted when dealing with beams prestressed with these innovatory materials that have an elastic-brittle behaviour.

Bond Strength of Carbon Fiber Sheet on Concrete Substrate Processed by Vacuum Assisted Resin Transfer Molding

  • Uddin, N.;Shohel, M.;Vaidya, U.K.;Serrano-Perez, J.C.
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.277-299
    • /
    • 2008
  • High quality and expedient processing repair methods are necessary to enhance the service life of bridge structures. Deterioration of concrete can occur as a result of structural cracks, corrosion of reinforcement, and freeze.thaw cycles. Cost effective methods with potential for field implementation are necessary to address the issue of the vulnerability of bridge structures and how to repair them. Most infrastructure related applications of fiber-reinforced plastics (FRPs) use traditional hand lay-up technology. The hand lay-up is tedious, labor-intensive and relies upon personnel skill level. An alternative to traditional hand lay-up of FRP for infrastructure applications is Vacuum Assisted Resin Transfer Molding (VARTM). VARTM uses single sided molding technology to infuse resin over fabrics wrapping large structures, such as bridge girders and columns. There is no work currently available in understanding the interface developed, when VARTM processing is adopted to wrap fibers such as carbon and/or glass over concrete structures. This paper investigates the interface formed by carbon fiber processed on to a concrete surface using the VARTM technique. Various surface treatments, including sandblasting, were performed to study the pull-off tensile test to find a potential prepared surface. A single-lap shear test was used to study the bond strength of CFRP fabric/epoxy composite adhered to concrete. Carbon fiber wraps incorporating Sikadur HEX 103C and low viscosity epoxy resin Sikadur 300 were considered in VARTM processing of concrete specimens.

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.