• Title/Summary/Keyword: FRP Reinforced Concrete

Search Result 561, Processing Time 0.023 seconds

Strengthening of axially loaded concrete columns using stainless steel wire mesh (SSWM)-numerical investigations

  • Kumar, Varinder;Patel, P.V.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.979-999
    • /
    • 2016
  • Stainless steel wire mesh (SSWM) is an alternative material for strengthening of structural elements similar to fiber reinforced polymer (FRP). Finite element (FE) method based Numerical investigation for evaluation of axial strength of SSWM strengthened plain cement concrete (PCC) and reinforced cement concrete (RCC) columns is presented in this paper. PCC columns of 200 mm diameter with height 400 mm, 800 mm and 1200 mm and RCC columns of diameter 200 mm with height of 1200 mm with different number of SSWM wraps are considered for study. The effect of concrete grade, height of column and number of wraps on axial strength is studied using finite element based software ABAQUS. The results of numerical simulation are compared with experimental study and design guidelines specified by ACI 440.2R-08 and CNR-DT 200/2004. As per numerical analysis, an increase in axial capacity of 15.69% to 153.95% and 52.39% to 109.06% is observed for PCC and RCC columns respectively with different number of SSWM wraps.

Structural Integrity Evaluation of Mechanically Fastened FRP Beams Under the Effects of Sustained Loads and Environments (지속하중과 환경영향을 받은 MF-FRP 보강보의 구조건전성 평가)

  • Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Mechanically fastening FRP (MF-FRP) strips using nails and anchors, has been shown to provide a more ductile behavior to the strengthened structural element than using bonded FRP. To further advance the state of the knowledge on this strengthening method, the current study examined environmental effects for six months on MF-FRP beams. Reinforced concrete beams strengthened with mechanically fastened FRP strips and subjected to sustained loads for six months were exposed to outdoor weather and constant high temperatures ($40^{\circ}C$). For comparison, the behavior of RC beam with and without sustained loads was evaluated. Results from flexural tests did not show any significant degradation or change of failure mode as a result of sustained load and of environmental effects such as high temperatures and outdoor weather over a period of six months. Failure of the beams was governed by FRP delamination followed by concrete crushing as not much load applied to the nail and anchors because of slip effects.

Repair of precracked RC rectangular shear beams using CFRP strip technique

  • Jayaprakash, J.;Samad, Abdul Aziz Abdul;Abbasovich, Ashrabov Anvar;Ali, Abang Abdullah Abang
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.427-439
    • /
    • 2007
  • The exploitation of fibre reinforced polymer composites, as external reinforcement is an evergreen and well-known technique for improving the structural performance of reinforced concrete structures. The demand to use FRP composites in the civil engineering industry is mainly due to its high strength, light weight, and stiffness. This paper exemplifies the shear strength of partially precracked reinforced concrete rectangular beams repaired with externally bonded Bi-Directional Carbon Fibre Reinforced Polymer (CFRP) Fabrics strips. All specimens were cast in the laboratory environment without any internal shear reinforcement. The test parameters were longitudinal tensile reinforcement, shear span to effective depth ratio, spacing of CFRP strips, and orientation of CFRP reinforcement. It mainly focuses on the shear capacity and modes of failure of the CFRP strengthened shear beams. Results have shown that the CFRP repaired beams attained a shear enhancement of 32% and 107.64% greater than the control beams. This study underscores that the CFRP strip technique significantly enhanced the shear capacity of precracked reinforced concrete rectangular beams without any internal shear reinforcement.

Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets (고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험)

  • Shin, Jiuk;Jeon, Jong-Su;Wright, Timothy R.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet (폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가)

  • Lee, Jin-Young;Jang, Dae-Sung;Kwon, Ki-Yeon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.627-634
    • /
    • 2014
  • In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Strengthening of Reinforced Concrete Structures using Externally Prestressed CFRP plates (외부 프리스트레스트 탄소섬유판에 의한 구조물 보강공법)

  • 박선규;유영찬
    • Computational Structural Engineering
    • /
    • v.17 no.1
    • /
    • pp.39-42
    • /
    • 2004
  • 콘크리트 구조물에 대한 보강공법은 1950년도에 개발된 강판보강공법을 위시로 하여 강연선에 의한 외부프리스트레싱 공법으로 발전하고 있으며, 약 10년전부터는 신소재인 FRP(Fiber Reinforced Polymer)에 의한 보강공법이 본격적으로 개발되어 실용화되고 있다. 강판보강공법은 에폭시 등의 접착제를 이용하여 콘크리트 인장측에 강판을 접착함으로써 강도 및 강성을 증가시키는 공법으로 강판을 보강재로 이용함으로써 공법에 대한 인지도가 높은 장점이 있는 반면, 재료의 가공 및 취급이 어려우며 중량이 커 자중이 증가되는 단점이 있다. 또한, 강재의 부식위험이 상존하고 있어 이에 대한 세심한 배려 및 주기적인 유지관리를 필요로 한다.(중략)

Study on the Bending Test of Glulam Beam Reinforced with GFRP Strips (복합재료로 보강된 집성보의 휨 실험에 대한 연구)

  • Kim, Young-Chan;Davalos, Julio F.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • A recent application of advanced composite materials, primarily fiber-reinforced plastic (FRP) composites, in structures is the reinforcement of conventional structural materials, such as concrete and glued-laminated timber (glulam), to increase their performance. In particular, the construction of large-scale glulam structures usually requires members with large depths and to significantly increase the stiffness and strength of glulam, the members can be reinforced with FRP at top and bottom surfaces. In this paper, glulam beams reinforced with GFRP strip are tested under 2-point bending and results are compared with numerical solution using layer-wise beam theory.

  • PDF

Mechanical properties of demountable shear connectors under different confined conditions for reusable hybrid decks

  • Kavour, Florentia;Christoforidou, Angeliki;Pavlovic, Marko;Veljkovic, Milan
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2022
  • In response to the sustainability requirements set in the EU Commission's "Green Deal" towards reduction of the greenhouse gas emissions, it is estimated that the structural design for deconstruction is going to contribute considerably to the sustainable development of the built environment. The demountability of multi-material structural systems basically depends on the shear connectors used in the structural system. This paper focuses on a type of demountable injected shear connector with an injected steel-reinforced resin (iSRR) which consists of spherical steel particles embedded in a resin. Its application to steel-to-concrete and steel-to-Fiber Reinforced Polymer (FRP) decks is presented along with its benefits. In parallel, an overview of the experimental and numerical research on the evaluation of the mechanical properties of the demountable bolted connectors with iSRR is discussed. Last, detailed finite element (FE) models and a parametric study are performed to quantify the confinement level of the SRR material influenced by the oversized hole diameter.

Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC (탄소섬유 FRP판과 현장타설 고인성섬유보강콘크리트 사이의 단순 부착슬립 관계)

  • Yoo, Jun-Sang;Yoo, Seung-Woon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system.