• Title/Summary/Keyword: FRP Reinforced Concrete

Search Result 564, Processing Time 0.032 seconds

Develop Evaluation Method of Effective Bond Length Between Concrete and Fiber Reinforcement Polymer (FRP로 보강된 콘크리트 부재의 유효부착길이 평가방법 제안)

  • Yi Waon Ho;Woo Hyun Su;Choi Ki Sun;Kang Dae Eon;Yang Won Jik;You Young Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.125-128
    • /
    • 2005
  • Recently new materials, such as fiber reinforced polymer(FRP) and other composite materials are being applied in reinforcing plate or plate or prestressing cables of concrete structures. Although these new materials themselves show the excellent durability and high strength, the bond behaviour between concrete surface and FRP is not well recognized. Therefore, this paper propose a evaluation method for effective bond length between fiber reinforced polymer(FRP) and concrete. To develop the evaluation method, this paper presents a review of current evaluation methods for effective bond length. These methods are compared by single face test, expose merits and demerits. And based on them, new evaluation method was developed. Finally, the new method was compared with existing methods to verify a adequateness for evaluation of effective bond length.

  • PDF

Research on the Bond Behavior of FRP Rebars subjected to Cyclic Loading (반복하중을 받는 FRP 보강근의 부착성능에 대한 연구)

  • Chang, Mun-Suk;Lee, Jung-Yoon;Park, Ji-Sun;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.205-208
    • /
    • 2006
  • The use of Fiber Reinforced Polymer (FRP) bars has been gaining popularity in the civil engineering community, as an alternative material to steel reinforcement, for their noncorrosive nature and high strength-to-weight ratio. Good performance of reinforced concrete requires adequate interfacial bond between the reinforcing material and the concrete because the load applied must be transferred from the matrix to the reinforcement. Although studies on the FRP bond behavior under monotonic loading has been reported by many, there are very little work done under cyclic loading. In this paper, we present the experimental study on the bond behavior of three different types of FRP rebars subjected to four different cyclic loading conditions.

  • PDF

The Prediction of Debonding Strength on the Reinforced Concrete Beams Strengthened with fiber Reinforced Polymer (섬유복합체로 휨보강된 RC보의 박리하중 예측에 관한 연구)

  • Hong Geon-Ho;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.903-910
    • /
    • 2005
  • In recent years, fiber reinforced polymer(FRP) plates have shown a great promise as an alternative to steel plates for reinforced concrete beam rehabilitation. Reinforced concrete beams strengthened with externally bonded FRP sheets to the tension face can exhibit ultimate flexural strengths several times greater than their original strength if their bond strength is enough. Debonding failure, however, may occur before the strengthened beam can achieve its enhanced flexural strength. The purpose of this paper is to investigate the debonding failure strength of FRP-strengthened reinforced concrete beams. An analytical procedure for calculating debonding load between concrete and strengthening FRP is presented. Based on the local bond stress-slip relationship in the previous studies, uniform bond stress is assumed on the effective bond length. The analytical expressions are developed from linear elastic theory and statistical analyses of experimantal results reported in the literature. The proposed method is verified by comparisons with experimental results reported in the previous researches.

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete

  • Tijani, Ibrahim A.;Lawal, Abiodun I.;Kwon, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.

Application of Concentrated FRP Bars to Enhance the Capacity of Two-Way Slabs (2방향 슬래브의 성능 향상을 위한 집중 배근된 FRP 바의 적용)

  • Lee, Joo-Ha;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.727-734
    • /
    • 2007
  • The influence of the differences in the physical and mechanical properties between fiber-reinforced polymer (FRP) and conventional steel, concentrated reinforcement in the immediate column region, as well as using steel fiber-reinforced concrete (SFRC) in the slab near the column faces, on the punching behavior of two-way slabs were investigated. The punching shear capacity, stiffness, ductility, strain distribution, and crack control were investigated. Concentrating of the slab reinforcement and the use of SFRC in the slab enhanced the punching behavior of the slabs reinforced with glass fiber-reinforced polymer (GFRP) bars. In addition the test results of the slabs with concentrated reinforcement were compared with various code equations and the predictions proposed in the literature specifically for FRP-reinforced slabs. An appropriate method for determining the reinforcement ratio of slabs with a banded distribution was also investigated to allow predictions to properly reflect the benefit of the slab reinforcement concentration.

An Experimental Study for the Compression Strength of Hybrid CFFT Pile (FRP 콘크리트 합성말뚝의 압축강도에 대한 실험적 연구)

  • Choi, Jin-Woo;Park, Joon-Seok;Nam, Jung-Hoon;An, Dong-Jun;Kang, In-Kyu;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.30-39
    • /
    • 2011
  • In this paper, we persent the results of on experimental investigations pertaining to the structural behavior of new type of concrete filled fiber reinforced plastic circular tubes (i.e., hybrid CFFT, HCFFT) which are suggested in order to mitigate the problems associated with the concrete filled steel-concrete composite tube (CFT) and the concrete filled fiber reinforced plastic tube (CFFT). It is found that when the HCFFT is used in the construction of pile foundation the HCFFT pile can transfer axial as well as flexural loads from the superstructure to the underground effectively in comparison with CFT and CFFT piles.

Temperature Variation Corresponding to the Protection Method and Edge Distance in Near-Surface-Mounted FRP in Concrete with Fire Protection (콘크리트내 표면매립보강된 FRP의 내화단열방법과 연단거리에 따른 온도변화)

  • Lim, Jong-wook;Seo, Soo-yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.137-146
    • /
    • 2019
  • Recently, the Near-Surface-Mounting method using Fiber reinforced polymer (FRP) has been developed and applied to the reinforcement of many concrete structural members. However, as a part of the fire resistance design, there is a lack of research related to fire insulation for the areas reinforced with FRP. In case of NSM reinforcement, there is a difference in the transferred temperature from the external surface to the groove corresponding to the location of the groove where the FRP is embedded, and the effect of this should be reflected in the fireproof insulation design. Therefore, in this study, after forming grooves for surface embedding in concrete blocks, fireproof insulation reinforcement was performed using Calcium Silicate (CS) fireproof board and an experiment to evaluate the temperature transfer was performed. By observing the temperature at these groove positions, the reduction of temperature transfer according to fireproof insulation detail was studied. As a result, when the NSM-FRP is properly fire-insulated using the CS-based fireproof board, the epoxy inside the groove does not reach its glass transition temperature until the external temperature reaches $800^{\circ}C$.

Behavior of RC columns strengthened with NSM and hybrid FRP under pure bending: Experimental and analytical study

  • Mohsen A. Shayanfar;Mohammad Ghanooni-Bagha;Solmaz Afzali
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.393-408
    • /
    • 2024
  • In recent decades the strengthening of reinforced concrete (RC) structural elements using Fiber-reinforced polymer (FRP) has received much attention. The behavior of RC elements can vary from axial compression to pure bending, depending on their loading. When the compressive behavior is dominant, the FRP jacket application is common, but when the flexural behavior is prevalent, the codes consider the FRP jacket ineffective. Codes suggest applying FRP bars or strips as Near-surface Mounted (NSM) or Externally Bonded (EB) in the tensile face to strengthen the beams under flexure. To strengthen the columns in tension-control mode, some researchers have suggested NSM FRP bars in both tension and compression faces alone or with the FRP jacket (hybrid). However, the number of tests that evaluate the pure bending of the strengthened columns as one of the pivotal points of the axial force-moment interaction curve is limited. In this paper, 11 RC elements strengthened using the NSM (in both tension and compression faces) or hybrid method were subjected to bending to assess the effect of the amount and material type of the FRP bar and jacket and the dimensions of the groove. The test results revealed that the NSM method increased the flexural capacity of the members between 10% to 50%. Furthermore, using the hybrid method increased the capacity between 51% to 91%. Finally, an analytical model was presented considering the effect of the NSM FRP bond in different circumstances, and its results were in good agreement with the experimental results.

Development and Durability Characteristics of FRP Reinforcing Bar for Concrete Structures (콘크리트 보강용 FRP 리바의 개발 및 내구 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Yoon, Jong-Han;Hwang, Kum-Sik;Cho, Yong-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.371-374
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. In this study, long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP- and GFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution, acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

  • PDF

Flexural Behavior of High-Strength Reinforced Concrete Beam with Recycled Aggregate Strengthened by FRP Plate (FRP로 보강된 순환골재 고강도 철근콘크리트 보의 휨거동)

  • Hong, Seong-Uk;Lee, Seung-Ho;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.126-132
    • /
    • 2018
  • As means to increase the use of concrete with recycled coarse aggregate (RCA), this study aims to evaluate the applicability for flexural strengthening of reinforced concrete beam with high-strength concretes and RCA on which FRP plates, used for repair and strengthening of old and low-durability reinforced concrete structures, is applied. In order to increase the adhesive force of epoxy and FRP plate, FRP plate was installed according to Near-Surface-Mounted (NSM) method. 12 specimens were manufactured using substitution rate of RCA (30%), concrete strengths (40MPa, 60MPa), diameters of deformed bar (D10, D13), and types of FRP plate (AFRP, CFRP) as variables to analyse flexural performance according to FRP plate and substitution rate of recycled aggregate. As a result, in all specimens, specimens strengthened by FRP plate showed a maximum of 17% increase in performance compared to specimens without FRP plate and strengthening performance of CFRP was found to be higher than AFRP. When modulus of rupture was used, the value of cracking moment was similar to that of the reference equation. As bending moment of some specimens strengthened by FRP plate failed to satisfy the criteria of KCI 2012 and ACI 440-2R, additional experiment is deemed as necessary.