• Title/Summary/Keyword: FRP Bar

Search Result 106, Processing Time 0.026 seconds

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

A study on the bending strength characteristics of steel bar and GFRP rebar in salt water surroundings (해수 환경에서의 철근과 GFRP 리바의 굽힘 강도 특성에 관한 연구)

  • Han, Gil-Young;Lee, Dong-Gi;Kwak, Sang-Muk;Bae, Si-Yon;Kim, Ki-Sung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.354-358
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastics (FRP) reinforcement for concrete structures. To promte the degradation of the adhesive condition at the fiber/matrix micro interface without matrix dissolution loss were carried out in salt water surrounding. The absorption properties and the bending strength were compared about GFRP rebar and steel bar.

  • PDF

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

Flexural Behavior of Concrete Beams Reinforced with CFRP rebars (CFRP Rebar로 보강한 콘크리트 보의 휨 거동)

  • Lee, Young-Hak;Won, Dong-Min;Kim, Min-Sook;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • To address the problems caused by the corrosion of steel rebar, active research has recently been carried out on members where fiber-reinforced polymer (FRP) is used in place of rebar. As FRP bar is highly brittle and has a low modulus of elasticity, further research is needed on the evaluation of serviceability, in other words on the deflection of flexural concrete members reinforced with FRP rebars. Taking the reinforcement ratio as a variable, this paper analyzes the flexural capacity of concrete beams reinforced with CFRP rebar. The test results of specimens reinforced with CFRP rebar show an increase in stiffness and resisting force along with an increase in the reinforcement ratio. A reinforcement ratio of about 1.3 is needed for the member reinforced with CFRP rebar to show same section property of a steel member. Through a comparison for the value of an effective moment of inertia, the equation suggested by Bischoff & Scanlon predicted values closest to the actual results.

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition (급속 알칼리 환경하에서의 비닐에스터/FRP 보강근의 재료성능 저하 특성에 관한 실험적 연구)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • There is increasingly more research focusing on the application of FRP reinforcing bars as an alternative material for steel reinforcing bars, but most such research look at short term behavior of FRP reinforced structures. In this study, the microscopic analysis and tensile behavior of Basalt and Glass FRP bars under freezing-thawing and alkaline conditions were experimentally evaluated. After 100 cycles of the freezing and thawing, the tensile strength and elastic modulus of FRP bars decreased by about 5%. In the case of microstructure of FRP bars during the initial 20 days, no significant damages of FRP bar sections were found under $20^{\circ}C$ alkaline solution; however, the specimens immersed in $60^{\circ}C$ alkaline solution were found to experience resin dissolution, fiber damage and the separation of the resin-fiber interface. In the alkaline environment, the strength decrease of about 10% occurred in the environment at $20^{\circ}C$ for 100 days, but the tensile strength of FRPs exposed for 500 days decreased by 50%. At temperature of $40^{\circ}C$ and $60^{\circ}C$, an abrupt decrease in the strength was observed at 50 and 100 days. Especially, the tensile strength decrease of Basalt fiber Reinforced Polymer bars showed more severe degradation due to the damage caused by dissolution of resin matrix and fiber swelling in alkaline solution. Therefore, in order to improve the long-term performance of the surface braided FRPr reinforcing bars, surface treatment is required to ensure alkali resistance.

Effect of Long-Term Load on Flexural Crack Widths in FRP-Reinforced Concrete Beams (장기하중이 FRP-보강근 콘크리트 보의 휨균열폭에 미치는 영향)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.694-701
    • /
    • 2018
  • Larger crack widths can be observed more in FRP-reinforced concrete members than in steel-reinforced concrete members as a result of the lower elastic modulus and bond strength of FRP reinforcement. The ACI 440.1R-15 design guide provides equations derived as the maximum bar spacing to control the crack widths indirectly. On the other hand, it is not concerned with long-term effects on the crack control design provisions. This study provides suggestions for how to incorporate time-dependent effects into the crack width equation. The work presented herein includes the results from 8 beams composed of four rectangular and T-shaped FRP-reinforced concrete beams tested for one year under four-point bending. Over a one year period, the crack widths increased as much as 2.6~3.0 times in GFRP and AFRP-reinforced specimens and 1.1~1.4 times in the CFRP-reinforced specimens compared to steel-reinforced specimens. In addition, the average multiple for crack width at one year relative to the instantaneous crack width upon the application of the sustained load was 2.4 in the specimens with a rectangular section and 3.1 in the specimens with a T-shaped section. As a result, it is recommended conservatively that the time-dependent coefficient be taken as 2.5 for the rectangular beams and 3.5 for T-beams.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.