• Title/Summary/Keyword: FRP 구속 콘크리트

Search Result 36, Processing Time 0.019 seconds

Prediction of Compressive Behavior of FRP-Confined Concrete Based on the Three-Dimensional Constitutive Laws (3차원 구성관계를 고려한 FRP-구속 콘크리트의 압축거동 예측모델)

  • Cho Chang-Geun;Kwon Min-ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.501-509
    • /
    • 2004
  • The proposed model can predict the compressive behaviors of concrete confined with fiber reinforced polymer (FRP) jacket. To model confining concrete by FRP jackets, the hypoelasticity-based constitutive law of concrete In tri-axial stress states has been presented. The increment of strength of concrete has been determined by the failure surface of concrete in tri-axial states, and its corresponding peak strain is computed by the strain enhancement factor that is proposed in the present study, Therefore, the newly proposed model is a load-dependent confinement model of concrete wrapped by FRP jackets to compare the previous models which are load-independent confinement models. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimension. The developed model is implemented into the incremental analysis of compressive tests. The verification study with several different experiments shows that the model is able to adequately capture the behavior of the compression test by including better estimations of the axial responses as well as the lateral response of FRP-confined concrete cylinders.

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Stress-Strain Relations of Concrete According to the Confining Conditions (구속 조건에 따른 콘크리트 응력-변형률 관계)

  • Im, Seok Been;Han, Taek Hee;Han, Sang Yun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.743-752
    • /
    • 2006
  • Confined concrete has enhanced strength and ductility compared with unconfined strength. Cause of these merits of confined concrete, many researches have been performed for confining effects of concrete and been studied in many fields. Although many researches about concrete confined by FRP sheets have been studied recently, it is difficult to apply concrete confined by FRP in real structures because FRP is a brittle material. In this study, the enhanced strength and ductility of concrete which is confined by steel tubes or steel plates were investigated. Fifty one specimens were tested and each specimen has different confining condition. Test results showed enhanced ductility and strength of confined concrete and concrete models were suggested under various confining conditions by regression of experimental data.

Development of Design Program for CFFT Structure (CFFT구조의 설계프로그램 개발)

  • Choi, Young-Min;Hwang, Yoon-Koog;Lee, Young-Ho;Lee, Jung-Howan;Kim, Dong-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.549-552
    • /
    • 2009
  • 본 논문에서는 재료적 성능이 우수하며 경량재료로서 최근 건설구조물에 활용하고자 하는 연구가 활발히 진행되고 있는 섬유보강재료(FRP : Fiber Reinforced Polymer)를 이용한 합성구조인 CFFT(Concrete Filled FRP Tube)의 설계프로그램을 개발하여 제안하고자 하였다. 먼저, CFFT구조는 FRP관에 의해 철근콘크리트가 구속되는 구조로서 기둥과 같이 축력이 도입되는 경우 포아송효과에 의한 변형을 FRP관이 구속효과를 줌으로써 콘크리트의 역학적 거동을 개선하게 되는데 본 연구에서는 실험에 의해 검증된 식을 제시하였으며 이를 바탕으로 CFFT구조를 설계하는 알고리즘을 제안하였다. 또한 CFFT구조는 FRP관의 구속으로 인해 고강도콘크리트와 긴장재의 도입이 가능한 구조로서 이에 대한 설계도 포함하였다. 그러나 이방성재료인 FRP의 설계와 동시에 FRP관에 의한 구속효과를 고려하는 CFFT구조의 설계는 일반 실무설계자들에게는 다소 난해한 작업으로써 전산화 설계프로그램의 필요성이 대두되어 본 연구에서 CFFT구조의 설계프로그램을 개발하였다. 개발된 설계프로그램의 검증을 위해 일반 철근콘크리트기둥, CFFT기둥, 고강도콘크리트와 PS긴장재를 도입한 CFFT기둥을 설계한 결과, 매우 실용적이며 타당한 설계가 수행될 수 있음을 확인하였다.

  • PDF

Behavior of Circular Concrete Cylinders Confined with Both Steel Spirals and Fiber Composites (나선형 철근 및 섬유에 의하여 동시에 구속된 원형 콘크리트 실린더의 거동)

  • Lee Jung-Yoon;Oh Young-Jun;Jeong Hoon-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.175-184
    • /
    • 2004
  • When the columns of existing RC structures are repaired with FRP composites, the core concrete of the columns is confined by both materials of steel spirals (or steel hoops) and FRP composites because the FRP composites wrap the existing columns which have been already confined with steel spirals or hoops. As the stress-strain curves of steel and fiber are different to each other, the behavior of concrete columns confined with both steel spiral and FRP composites is also different to that of concrete columns confined with only steel spiral or FRP composites. Twenty four RC cylinders were tested in order to observe the behavior of RC cylinders confined with both materials. The observed results of the test showed that the behavior of the test cylinders confined with both materials was quite different to that of cylinders confined with only one material.

Analysis of Confinement Effectiveness for FRP Confined Concrete Columns (FRP로 구속된 콘크리트 압축부재의 구속효과 분석)

  • Choi, Eunsoo;Choi, Seung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.19-24
    • /
    • 2011
  • Concrete columns strengthening effect due to FRP (Fiber Reinforced Polymer) confinement depends on the elastic modulus of the FRP. This study analyzes the retrofitting effect of FRP confinements according to elastic modulus of FRPs using the existing data and suggests a practical model to assess the strengthening effect. This study subdivides the FRP elastic modulus into three parts based on normal concrete and steel elastic modulus. The slope and the y-axis intersection seem to increase with increasing FRP elastic modulus. In addition, the strengthening effect does not develop up to some amount of FRP confinement having relatively smaller elastic modulus than the compressive elastic modulus of concrete. In this case, a linear model to assess the strengthening effect is hard to be used. Thus, this study suggests that the FRP jackets having 2 times larger elastic modulus than that of concrete are recommended to be used for retrofit of concrete and that a linear model can be applied for the case. The suggested model shows nearly the same result regardless to the restraint of the y-axis intersection. This has been observed at the model of steel confinement and, thus, is a reliable result.

Behavior According to Confinement of Compressive Concrete on Flexural Members Reinforced with FRP Bars (FRP bar를 주근으로 사용한 콘크리트 휨부재의 압축측 콘크리트 구속에 따른 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.110-118
    • /
    • 2008
  • The use of FRP bar as reinforced concrete beams is considered as one of the most prominent solution that may overcome the corrosion of reinforcing steel bars. However, in the case of FRP reinforced concrete, both the reinforcing and the reinforced materials are brittle. For this reason, ductility of structures with FRP reinforcement is much less than that of structures with steel reinforcements. In this study, a method has been suggested to provide a meaningful quantification of ductility for concrete beams reinforced with FRP bars. This paper shows which the confinement to the compression concrete by the spiral can increase the ductility of FRP over-reinforced concrete beams.

Section Design of CFFT including Confined Effect (CFFT구조의 구속효과를 고려한 단면설계)

  • Choi, Young-Min;Hwang, Yoon-Koog;Lee, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.45-46
    • /
    • 2009
  • The main objective of this study is to suggest section design method of CFFT(Concrete Filled FRP Tube) structures which are considered of confined effect by FRP tube and using high strength concrete and PS strands for pier. It may be stated that the proposed method may be implemented as a rational and practical approach for CFFT section design.

  • PDF

Analysis of FRP-Confined Concrete According to Lateral Strain History (횡변형률 이력에 근거한 FRP-구속 콘크리트의 해석)

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.201-204
    • /
    • 2008
  • The proposed method, capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (Fiber Reinforced Polymers) composites in a rational manner, is based on the fact that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure. The elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. This procedure enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods.

  • PDF