• Title/Summary/Keyword: FRACTURE TOUGHNESS

Search Result 1,704, Processing Time 0.022 seconds

A Study on the Flexural Toughness of Steel Fiber Reinforced Recycled Concrete (강섬유 보강 재생 콘크리트의 휨인성에 관한 연구)

  • Koo, Bong-Kuen;Kim, Tae-Bong;Kim, Chang-Woon;Park, Jae-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • Recycled aggregates were generated when concrete structures were dismembered. However, in concrete structures, because of durability, strength and toughness, recycled aggregates don't use generally. This study was done to use recycled aggregate in concrete structures. Problems of durability, strength, and toughness were caused troubles, when recycled aggregates were used, were solved as steel fibers and additives were added. Of course, steel fiber length, steel fiber contents, additive substitution, and recycled aggregate substitution were variables of this study. After flexural specimens($15{\times}15{\times}70cm$) with notch(45mm) were fabricated, basic strength tests were done and toughness was estimated using fracture mechanics parameters. The results suggest that JIC is a promising fracture criterion for all of these, while KIC(or GIC) almost certainly are not.

  • PDF

Effect of Side Grooved on the Elastic Plastic Fracture Toughness of Gas Piping Meterial (가스배관재의 탄소성파괴인성에 미치는 측면홈영향)

  • 임만배;차귀준;윤한기;김정호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.350-356
    • /
    • 2001
  • SG-50 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the J$_{IC}$. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases the scattering of them and tunneling and shear lip by the side groove.e.

  • PDF

The effects of matrix aging and residual stress changes on $Avimid^{(R)}$ K3B/IM7 laminates (수지 노화와 잔류응력 변화가 $Avimid^{(R)}$ K3B/IM7 복합재 적층에 미치는 영향)

  • Kim, Hyung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.124-130
    • /
    • 2005
  • In this paper, the effects of matrix hygrothermal aging and residual stress changes on $Avimid^{(R)}$ K3B/IM7 laminates in $80^{\circ}C$ water were studied. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, the change in residual stresses. After 500 hours fully saturated aging of the neat resin, the weight gain was 1.55% increase with the diffusion coefficient $7{\times}10^{-6}m^2/s$ and the fracture toughness was decreased about 41%. After 100 hours fully saturated aging of the $[+45/0/-45/90]_s$ K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was 0.41% increase with the diffusion coefficient $1{\times}10^{-6}m^2/s$ and the loss of the microcracking fracture toughness was 43.8% of the original toughness. To see whether the residual stress influenced the fracture toughness, two ply $[90^{\circ}/0^{\circ}]$ laminates were put in $80^{\circ}C$ water from 2 hours to 8 hours. The changes in residual stress in 8 hours are less than 3MPa. Because the 3MPa change is not sufficient to degrade the laminates, the main factor to degrade the microcracking fracture toughness was the degradation of the matrix fracture toughness.

Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues (종류가 다른 부직포가 삽입된 하이브리드 복합재료의 모드 II 층간파괴인성)

  • Jeong, Jong-Seol;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2013
  • The mode II interlaminar fracture toughness was evaluated for CFRP laminates with different types of nonwoven tissues and the source of increased mode II interlaminar fracture toughness was examined by SEM analysis in this paper. The interlaminar fracture toughness in mode II is obtained by an end notched flexure test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. On the basis of the specimen with no non-woven tissue, interlaminar fracture toughness on mode II at specimens inserted with non-woven carbon and glass tissues and polyester tissues increases as much as 166.5% and 137.1% and 157.4% respectively. The results show that mode II interlaminar fracture toughness of CFRP laminates inserted with nonwoven tissues increased due to the fiber bridging, fiber breakage, and hackle etc. by SEM analysis.

Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions

  • Carpinteri, Alberto;Cornetti, Pietro;Pugno, Nicola;Sapora, Alberto;Taylor, David
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.609-620
    • /
    • 2009
  • In this paper the results of a series of experimental tests upon three-point bending specimens made of polystyrene and containing re-entrant corners are firstly described. Tests involved different notch angles, different notch depths and finally different sizes of the samples. All the specimens broke at the defect, as expected because of the material brittleness and, hence, the generalized stress intensity factor was expected to be the governing failure parameter. Recorded failure loads are then compared with the predictions provided by a fracture criterion recently introduced in the framework of Finite Fracture Mechanics: fracture is assumed to propagate by finite steps, whose length is determined by the contemporaneous fulfilment of energy balance and stress requirements. This fracture criterion allows us to achieve the expression of the generalized fracture toughness as a function of the tensile strength, the fracture toughness and the notch opening angle. Comparison between theoretical predictions and experimental data turns out to be more than satisfactory.

A Study on the Characteristic of Fracture Toughness in the Multi-Pass Welding Zone for Nuclear Piping (원전 배관재 다층 용접부의 파괴 특성에 관한 연구)

  • Park, Jae-Sil;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.381-389
    • /
    • 2001
  • The objective of this paper is to evaluate the fracture resistance characteristics of SA508 Cl.1a to SA508 Cl.3 welds manufactured for the reactor coolant loop piping system of nuclear power plants. The effect of the crack plane orientation to the welding process orientation and the preheat temperature on the fracture resistance characteristics were discussed. Results of the fracture resistance test showed that the effect of the crack plane orientation to the welding process orientation of the fracture toughness is significant, while that of preheat temperature on the fracture toughness is negligible. The micro Vickers hardness test, the metallographic observation and the fractography analysis were conducted to analyse the crack jump phenomenon on the L-R crack plane orientation in the multi-pass welding zone. As these results, it is shown that the crack jump phenomenon was produced because of the inhomogeneity between welding beads and the crack plane orientation must be considered for the safety of the welding zone in the piping system.

J-Integral Evaluation of Concrete Fracture Characteristics

  • Choi, Sin-Ho;Kye, Hae-Ju;Kim, Wha-Jung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.183-189
    • /
    • 2006
  • Many researchers have recently proposed various parameters, variables of models and experimental methods to evaluate fracture properties of concrete, and their developments allow us to analyze the non-linear and quasi-brittle fracture mechanisms. This paper presents a brief treatment of the fracture parameters. Additionally, three-point bending tests were conducted to compare J-integral($J_{Ic}$) with other parameters($K_{Ic},\;G_{Ic},\;and\;G_F$). The change in parameter values with respect to the width and notch length of concrete beam specimens was also considered. The load-displacement curves were used to measure the concrete fracture toughness experimentally. From the results of experiment, it was found that the value of $G_F\;and\;J_{Ic}$ decreased as the notch depth increased and that $G_F$ was less sensitive than $J_{Ic}$. Therefore, the former, $G_F$, is more appropriate in using it as the concrete fracture toughness parameter. The values of $G_F\;and\;J_{Ic}$ increased when the width of concrete specimens increasing from 75 mm to 150 mm. Thus, the effects of the specimen width should be considered in determining the fracture toughness of concrete.

Fracture Toughness and Failure Behavior of WC-Co Composites by Fracture Surface Analysis (파괴표면분석을 통한 WC-Co복합재료의 Fracture Toughness측정방법과 Failure Behavior)

  • ;J.J Mecholsky, Jr.
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.645-654
    • /
    • 1989
  • Specimens of WC-Co were indented to measure the resulting crack size and unindented samples were fractured in 3-point flexure to obtain the strength and to measure characteristic features on the fracture surface. Fracture toughness was determined using fractography and compared to those determined using identation techniques. We show that principles of fracture mechanics can be applied WC-Co composites and can be used to analyze the fracture process. The fracture surfaces were examined by scanning electron microscopy and optical microscopy. Characteristic feature observed in glasses, single crystals and polycrystalline materials known as mirror, mist, hackle, and crack branching were identified for these composites. We discuss the importance of fracture surface analysis in determining the failure-initiating sources and the failure behaviorof WC-Co composites.

  • PDF

A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures (해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구)

  • Kang Sung-Won;Kim Myung-Hyun;Kim Yong-Bin;Shin Yong-Taek;Lee Hae-Woo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.

Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates (유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가)

  • Woo Sung-Choong;Choi Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.