• Title/Summary/Keyword: FPase

Search Result 37, Processing Time 0.029 seconds

Developing A Framework for Performance Assessment in Science Education

  • Kim, Eun-Jin;Park, Hyun-Ju;Kang, Ho-Kam;Noh, Suk-Goo
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.4
    • /
    • pp.319-330
    • /
    • 2003
  • The purpose of this study is to develop a Framework for Performance Assessment in Science Education(FPASE). Science educators in the past have paid more attention to science curriculum and teaching strategies than assessment. In recent years, attention has turned toward performance assessment which addresses the concerns of science curriculum and instruction, and which is consistent with goals of science education at various levels of interests. Science educators are trying to do performance assessment, yet they don't have a framework that is highly qualified in terms of science educational objectives for the future, and advantages of performance assessment. We, therefore, have developed a framework for performance assessment in science education, which may be useful for science teachers to understand and assess their students' abilities. We have extracted seven domains covering students' various abilities as the important objectives of science performance assessment and grouped them into three categories: General, Science specific, and Intermediate abilities. And we developed a F-PASE with a three dimensional solid figured structure, and illustrated it as the configuration of a com. F-PASE is useful for science teachers to develop and select a science performance assessment as well as have a more advanced understanding of their students' abilities. It is a creative and novel assessment framework in terms of structure, configuration, functions and meanings. It also suggests a new vision of an assessment framework in science education.

Hydrolysis of Empty Fruit Bunch of Oil Palm Using Cellulolytic Enzymes from Aspergillus terreus IMI 28243

  • Kader, Jalil;Krishnasamy, Getha;Mohtar, Wan;Omar, Othman
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.514-517
    • /
    • 1999
  • Hydrolysis of EFB (empty fruit bunch) derived from oil palm was studied using crude enzyme from Aspergillus terreus IMI 282743 along with commercial enzymes from Trichoderma reesei and Aspergillus niger. Hydrolysis at $40^{\circ}C$ and $50^{\circ}C$ with $\alpha$-cellulose or EFB gave significantly lower yield when commercial enzymes of T. reesei and A. niger were used and the hydrolysis time extended beyond 10 h. After 24 h of hydrolysis at $40^{\circ}C$ and $50^{\circ}C$, the filter paper activity (Fpase) from A. terreus retained as much activity as A. niger and it was significantly higher than T. reesei. Glucose concentration of 0.25% and 0.5% caused significant inhibition in the crude enzyme, but in regards to the commercial enzymes it only showed a slight effect. Crude enzymes from A. terreus could produce the highest reducing sugars when compared to commercial enzymes from T. reesei or A. niger. Nevertheless, low yield of sugar was observed for EFB for all treatments.

  • PDF

Production of Cellulolytic Enzymes by Trichoderma harzianum FJ1 in Solid State Fermentation. (Trichoderma harzianum FJ1의 고체상태배양에 의한 섬유소분해효소의 생산)

  • 유승수;김경철;김성준
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.257-263
    • /
    • 2003
  • The cellulases production in solid state fermentation (SSF) of Trichoderma harzianum FJ1 with high cellulases productivity using cellulosic wastes was investigated. Physical and chemical conditions of the fermentation, such as moisture content, initial pH, and composition of mixed substrate (wine waste, rice straw, and soybean flour) on FPase (Filter paper activity) production were examined. The enzyme production was optimized in the conditions of moisture content of 70%, pH 5.0, 3$0^{\circ}C$, and 1:1:1 composition of mixed substrate containing wine waste, rice straw, and soybean flour. The highest activities of FPA, CMCase, Xylanase, $\beta$-glucosidase, and Avicelase in the optimized culture conditions were 15.2, 69.1, 83.9, 29.2, and 4.2 unit/g-SDW in 5 day cultivation, respectively. Economical and efficient production of cellulolytic enzymes by T harzianum FJ1 using cellulosic wastes in solid state fermentation will contribute to the biological saccharification of cellulosic wastes with enormous potential resource value in future.

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops

  • Zhao, Chao;Deng, Yunjin;Wang, Xingna;Li, Qiuzhe;Huang, Yifan;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1280-1290
    • /
    • 2014
  • In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

Purification of Cellulase Produced from Cellulomonas sp. YE-5 (Cellulomonas sp. YE-5가 생산하는 Cellulase의 정제)

  • 최동철;허남윤;오두환;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.376-382
    • /
    • 1990
  • An extracellular cellulase producing bacterium YE-5 was isolated from soil, and identified as a Cellulomonas sp. by its taxonomical characteristics. The maximal activities of avicelase (0.35 units/ml), CMCase (3.18 units/ml), FPase (0.315 units/ml) and $\beta$-glucosidase (0.882 units/ml) were obtained when this strain was cultured for 48 hrs at $30^{\circ}C$ in a medium containing 0.8% (w/v) Solka floc, 0.06010 (wlv) urea, 0.1% (w/v) $K_2HP0_4$, 0.1% (w/v) $MgS0_4.7H2_0$, 0.2% (w/v) bacto peptone, 0.2% (w/v) yeast extract and pH 6.5. The cellulase was purified by ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex 6-100 column chromatography from culture filtrate of Cellulomonus sp. YE-5. The molecular weights of purified avieelase, CMCase I, and CMCase II were estimated to be about 95,000 ~ 105,000, 46,000 ~ 47,000 and 120,000 ~ 125,000, respectively.

  • PDF

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.